[go: up one dir, main page]

login
Search: a224762 -id:a224762
     Sort: relevance | references | number | modified | created      Format: long | short | data
Denominator of fractional curling number of binary expansion of n.
+10
4
1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 2, 3, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 5, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 6, 2, 1, 1, 1, 5, 1, 1, 3, 2, 1, 1, 3, 5, 1
COMMENTS
See A224762 for definition and Maple program.
CROSSREFS
Numerator of fractional curling number of binary expansion of n.
+10
3
1, 1, 1, 2, 2, 3, 1, 3, 3, 4, 2, 2, 2, 3, 1, 4, 4, 5, 5, 2, 2, 5, 5, 3, 3, 4, 2, 2, 2, 3, 1, 5, 5, 6, 3, 2, 2, 2, 3, 3, 3, 5, 3, 2, 2, 2, 3, 4, 4, 5, 5, 2, 2, 5, 2, 3, 3, 4, 2, 2, 2, 3, 1, 6, 6, 7, 3, 2, 2, 2, 7, 3, 3, 7, 5, 2, 2, 5, 7, 4
COMMENTS
See A224762 for definition and Maple program.
CROSSREFS
Define a sequence of rationals by S(1)=1; for n>=1, write S(1),...,S(n) as XY^k, Y nonempty, where the fractional exponent k is maximized, and set S(n+1)=k; sequence gives denominators of S(1), S(2), ...
+10
2
1, 1, 1, 1, 2, 1, 2, 1, 5, 1, 4, 1, 2, 3, 1, 3, 2, 4, 7, 1, 5, 12, 1, 3, 4, 7, 7, 1, 5, 4, 5, 2, 15, 1, 6, 1, 2, 5, 7, 13, 1, 5, 4, 13, 1, 4, 3, 23, 1, 4, 2, 14, 1, 4, 2, 4, 1, 4, 2, 4, 1, 53, 1, 6, 29, 1, 3, 20, 1, 3, 3, 1, 3, 3, 1, 14, 24, 1, 6, 15, 1, 3, 9, 1, 3, 3, 4, 29, 1, 5, 24, 14, 16, 1, 5, 5, 1, 3, 13, 1, 3, 3, 16
COMMENTS
See A224762 for definition and Maple program.
LINKS
Allan Wilks, Table of n, S(n) for n = 1..10000 [The first 1000 terms were computed by N. J. A. Sloane]
MAPLE
See A224762.
CROSSREFS
Cf. A224762 (numerators), A090822.

Search completed in 0.004 seconds