[go: up one dir, main page]

login
Search: a213350 -id:a213350
     Sort: relevance | references | number | modified | created      Format: long | short | data
7-quantum transitions in systems of N >= 7 spin 1/2 particles, in columns by combination indices.
+10
3
1, 16, 144, 9, 960, 180, 5280, 1980, 55, 25344, 15840, 1320, 109824, 102960, 17160, 286, 439296, 576576, 160160, 8008, 1647360, 2882880, 1201200, 120120, 1365, 5857280, 13178880, 7687680, 1281280, 43680, 19914752, 56010240
OFFSET
7,2
COMMENTS
For a general discussion, please see A213343.
This a(n) is for septuple-quantum transitions (q = 7).
It lists the flattened triangle T(7;N,k) with rows N = 7,8,... and columns k = 0..floor((N-7)/2).
REFERENCES
LINKS
Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
FORMULA
Set q = 7 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k).
EXAMPLE
Starting rows of the triangle:
N | k = 0, 1, ..., floor((N-7)/2)
7 | 1
8 | 16
9 | 144 9
10 | 960 180
11 | 5280 1980 55
MATHEMATICA
With[{q = 7}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, q, q + 10}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 20 2019 *)
PROG
(PARI) See A213343; set thisq = 7
CROSSREFS
Cf. A051288 (q=0), A213343 to A213348 (q=1 to 6), A213350 to A213352 (q=8 to 10).
Cf. A054851 (first column), A004313 (row sums).
KEYWORD
nonn,tabf
AUTHOR
Stanislav Sykora, Jun 13 2012
STATUS
approved
9-quantum transitions in systems of N >= 9 spin 1/2 particles, in columns by combination indices.
+10
3
1, 20, 220, 11, 1760, 264, 11440, 3432, 78, 64064, 32032, 2184, 320320, 240240, 32760, 455, 1464320, 1537536, 349440, 14560, 6223360, 8712704, 2970240, 247520, 2380, 24893440, 44808192, 21385728, 2970240, 85680, 94595072, 212838912, 135442944, 28217280
OFFSET
9,2
COMMENTS
For a general discussion, please see A213343.
This a(n) is for nonuple-quantum transitions (q = 9).
It lists the flattened triangle T(9;N,k) with rows N = 9,10,... and columns k = floor((N-9)/2).
REFERENCES
LINKS
Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
FORMULA
Set q = 9 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k).
EXAMPLE
Starting rows of the triangle:
N | k = 0, 1, ..., floor((N-9)/2)
---+------------------------------
9 | 1
10 | 20
11 | 220 11
12 | 1760 264
13 | 11440 3432 78
MATHEMATICA
With[{q = 9}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, q, q + 10}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 20 2019 *)
PROG
(PARI) See A213343; set thisq = 9
CROSSREFS
Cf. A051288 (q=0), A213343 to A213350 (q=1 to 8), A213352 (q= 10).
Cf. A140354 (first column,with offset 9), A004315 (row sums).
KEYWORD
nonn,tabl
AUTHOR
Stanislav Sykora, Jun 13 2012
STATUS
approved

Search completed in 0.006 seconds