[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a213268 -id:a213268
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numerator of prime(n+1) - prime(n)/2.
+10
2
2, 7, 9, 15, 15, 21, 21, 27, 35, 33, 43, 45, 45, 51, 59, 65, 63, 73, 75, 75, 85, 87, 95, 105, 105, 105, 111, 111, 117, 141, 135, 143, 141, 159, 153, 163, 169, 171, 179, 185, 183, 201, 195, 201, 201, 223, 235, 231, 231, 237, 245, 243, 261, 263, 269, 275, 273, 283, 285, 285, 303, 321, 315, 315, 321, 345, 343, 357, 351, 357, 365, 375, 379
OFFSET
1,1
COMMENTS
Second row of the inverse semi-binomial transform of A000040(n+1) as introduced in A213268.
The list of denominators is 1, 2, 2, ... (2 repeated), so a(n) = A210497(n) for n>1.
a(n) - prime(n) = 2*prime(n+1)-prime(n)-prime(n) are prime differences (A001223) multiplied by 2, and therefore multiples of 4.
FORMULA
a(n) ~ n log n. Apart from the first term, a(n) = 2*prime(n+1) - prime(n). - Charles R Greathouse IV, Jul 10 2012
a(n) = prime(n+2) - A036263(n), n>1. - R. J. Mathar, Jul 10 2012
MAPLE
A211280 := proc(n)
ithprime(n+1)-ithprime(n)/2 ;
numer(%) ;
end proc: # R. J. Mathar, Jul 10 2012
MATHEMATICA
Numerator[#[[2]]-#[[1]]/2]&/@Partition[Prime[Range[80]], 2, 1] (* Harvey P. Dale, Mar 05 2023 *)
CROSSREFS
Denominators are A040000.
KEYWORD
nonn,easy,frac
AUTHOR
Paul Curtz, Jul 05 2012
STATUS
approved
Denominator of (n+4)/gcd(n, 4)^2, a 16-periodic sequence that associates A061037 with A106617.
+10
1
4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2
OFFSET
0,1
COMMENTS
This sequence may also be defined as the denominators of A061037(n+3)/(n+1), or also as A060819 / A109008.
One can notice that the analog numerators [numerators of (n+4)/gcd(n, 4)^2] are A106617 left-shifted 4 places.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).
FORMULA
(n+4) / gcd(n, 4)^2 = A188134(n+4) / 4. - Michael Somos, Sep 12 2014
a(n) = a(n+16) = a(-n), a(2*n + 1) = 1 for all n in Z. - Michael Somos, Sep 13 2014
EXAMPLE
Fractions begin:
1/4, 5, 3/2, 7, 1/2, 9, 5/2, 11, 3/4, 13, 7/2, 15, 1, 17, 9/2, 19,
5/4, 21, 11/2, 23, 3/2, 25, 13/2, 27, 7/4, 29, 15/2, 31, 2, 33, 17/2, 35,
...
Numerators begin:
1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19,
5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 2, 33, 17, 35,
...
Periodic part = [4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1];
MATHEMATICA
a[n_] := (n+4)/GCD[n, 4]^2 // Denominator; Table[a[n], {n, 0, 100}]
(* or: *)
Table[{1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4}[[Mod[n, 16, 1]]], {n, 0, 100}]
PROG
(PARI) for(n=0, 100, print1(denominator((n+4)/gcd(n, 4)^2), ", ")) \\ G. C. Greubel, Aug 05 2018
(Magma) [Denominator((n+4)/Gcd(n, 4)^2): n in [0..100]]; // G. C. Greubel, Aug 05 2018
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
Denominators of the Inverse bi-binomial transform of A164558(n)/A027642(n) read downwards antidiagonals.
+10
0
1, 2, 2, 6, 6, 6, 1, 3, 3, 1, 30, 30, 30, 30, 30, 1, 15, 15, 15, 15, 1, 42, 42, 210, 210, 210, 42, 42, 1, 21, 21, 105, 105, 21, 21, 1, 30, 30, 210, 210, 210, 210, 210, 30, 30, 1, 15, 15, 105, 105, 105, 105, 15, 15, 1
OFFSET
0,2
COMMENTS
Starting from any sequence a(k) in the first row, we define the array T(n,k) of the inverse bi-binomial transform by T(0,k) = a(k), T(n,k) = T(n-1,k+1) -2*T(n-1,k) n>0. Hence A164558(n)/A027642(n) and successive "bi-differences":
1, 3/2, 13/6, 3, 119/30, 5, 253/42, 7, 239/30, 9;
-1/2, -5/6, -4/3, -61/30, -44/15, -167/42, -106/21, -181/30, -104/15;
1/6, 1/3, 19/30, 17/15, 397/210, 61/21 , 853/210, 77/15;
0, -1/30, -2/15, -79/210, -92/105, -367/210, -314/105;
-1/30, -1/15, -23/210, -13/105, 1/210, 53/105;
0, 1/42, 2/21, 53/210, 52/105;
1/42, 1/21, 13/210, -1/105;
0, -1/30, -2/15;
-1/30, -1/15;
0.
The first column is A027641(n)/A027642(n).
EXAMPLE
Partial array of denominators:
1, 2, 6, 1, 30, 1, 42, 1, 30, 1;
2, 6, 3, 30, 15, 42, 21, 30, 15;
6, 3, 30, 15, 210, 21, 210, 15;
1, 30, 15, 210, 105, 210, 105;
30, 15, 210, 105, 210, 105;
1, 42, 21, 210, 105;
42, 21, 210, 105;
1, 30, 15;
30, 15;
1.
a(n):
1;
2, 2;
6, 6, 6,;
1, 3, 3, 1;
30, 30, 30, 30, 30;
MATHEMATICA
A164558[n_] := Sum[(-1)^k*Binomial[n, k]*BernoulliB[k], {k, 0, n}] // Numerator; t[0, k_?Positive] := A164558[k] / Denominator[ BernoulliB[k]]; t[n_?Positive, k_] := t[n, k] = t[n-1, k+1] - 2*t[n-1, k]; t[0, 0] = 1; t[_, _] = 0; Flatten[ Table[t[n-k , k] // Denominator, {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Dec 04 2012 *)
CROSSREFS
Cf. A213268.
KEYWORD
nonn,tabl,less
AUTHOR
Paul Curtz, Dec 02 2012
STATUS
approved

Search completed in 0.005 seconds