[go: up one dir, main page]

login
Search: a213212 -id:a213212
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of ordered triples (i,j,k) with |i| + |j| + |k| <= n and gcd(i,j,k) <= 1.
+10
17
1, 7, 19, 51, 99, 195, 291, 483, 675, 963, 1251, 1731, 2115, 2787, 3363, 4131, 4899, 6051, 6915, 8355, 9507, 11043, 12483, 14595, 16131, 18531, 20547, 23139, 25443, 28803, 31107, 34947, 38019, 41859, 45315, 49923, 53379, 58851, 63171, 68547
OFFSET
0,2
COMMENTS
Note that gcd(0,m) = m for any m.
I would also like to get the sequences of the numbers of distinct sums i+j+k (also distinct products i*j*k) over all ordered triples (i,j,k) with |i| + |j| + |k| <= n; also over all ordered triples (i,j,k) with |i| + |j| + |k| <= n and gcd(i,j,k) <= 1.
Also the sequences of the numbers of distinct sums i+j+k (also distinct products i*j*k) over all ordered triples (i,j,k) with i >= 0, j >= 0, k >= 0 and i + j + k = n; also over all ordered triples (i,j,k) with i >= 0, j >= 0, k >= 0, i + j + k = n and gcd(i,j,k) <= 1.
Also the number of ordered triples (i,j,k) with i >= 0, j >= 0, k >= 0, i + j + k = n and gcd(i,j,k) <= 1.
From Robert Price, Mar 05 2013: (Start)
The sequences that address the previous comments are:
Distinct sums i+j+k with or without the GCD qualifier results in a(n)=2n+1 (A005408).
Distinct products i*j*k without the GCD qualifier is given by A213207.
Distinct products i*j*k with the GCD qualifier is given by A213208.
With the restriction i,j,k >= 0 ...
Distinct sums or products equal to n is trivial and always equals one (A000012).
Distinct sums <= n results in a(n)=n (A001477).
Distinct products <= n without the GCD qualifier is given by A213213.
Distinct products <= n with the GCD qualifier is given by A213212.
Ordered triples with sum = n without the GCD qualifier is A000217(n+1).
Ordered triples with sum = n with the GCD qualifier is A048240.
Ordered triples with sum <= n without the GCD qualifier is A000292.
Ordered triples with sum <= n with the GCD qualifier is A048241. (End)
This sequence (A100450) without the GCD qualifier results in A001845. - Robert Price, Jun 04 2013
LINKS
FORMULA
G.f.: (3 + Sum_{k>=1} (moebius(k)*((1+x^k)/(1-x^k))^3))/(1-x). - Vladeta Jovovic, Nov 22 2004. [Sketch of proof: Let b(n) = number of ordered triples (i, j, k) with |i| + |j| + |k| = n and gcd(i, j, k) <= 1. Then a(n) = A100450(n) = partial sums of b(n) and Sum_{d divides n} b(d) = 4*n^2+2 = A005899(n) with g.f. ((1+x)/(1-x))^3.]
MAPLE
f:=proc(n) local i, j, k, t1, t2, t3; t1:=0; for i from -n to n do for j from -n to n do t2:=gcd(i, j); for k from -n to n do if abs(i) + abs(j) + abs(k) <= n then t3:=gcd(t2, k); if t3 <= 1 then t1:=t1+1; fi; fi; od: od: od: t1; end;
MATHEMATICA
f[n_] := Length[ Union[ Flatten[ Table[ If[ Abs[i] + Abs[j] + Abs[k] <= n && GCD[i, j, k] <= 1, {i, j, k}, {0, 0, 0}], {i, -n, n}, {j, -n, n}, {k, -n, n}], 2]]]; Table[ f[n], {n, 0, 40}] (* Robert G. Wilson v, Dec 14 2004 *)
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 21 2004
STATUS
approved
Number of distinct products i*j*k over all triples (i,j,k) with |i| + |j| + |k| <= n.
+10
10
1, 1, 1, 3, 5, 9, 13, 19, 25, 35, 43, 55, 65, 79, 91, 111, 127, 149, 167, 193, 217, 249, 273, 311, 339, 383, 419, 463, 501, 551, 591, 643, 693, 751, 799, 869, 925, 995, 1057, 1133, 1199, 1281, 1347, 1439, 1515, 1615, 1697, 1801, 1883, 2001, 2101, 2219, 2313
OFFSET
0,4
COMMENTS
This sequence is in reply to an extension request made in A100450.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n = 0..100 from Robert Price)
MAPLE
h:= proc() true end:
b:= proc(n) local c, i, j, p;
c:=0;
for i to iquo(n, 3) do
for j from i to iquo(n-i, 2) do p:= i*j*(n-i-j);
if h(p) then h(p):= false; c:=c+1 fi
od
od; c
end:
a:= proc(n) a(n):= `if`(n=0, 1, a(n-1) +2*b(n)) end:
seq(a(n), n=0..60); # Alois P. Heinz, Mar 02 2013
MATHEMATICA
f[n_] := Length[ Union[ Flatten[ Table[ If[ Abs[i] + Abs[j] + Abs[k] <= n, {i*j*k}, {0}], {i, -n, n}, {j, -n, n}, {k, -n, n}], 2]]]; Table[ f[n], {n, 0, 100}]
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 01 2013
STATUS
approved
Number of distinct products i*j*k over all triples (i,j,k) with |i| + |j| + |k| <= n and gcd(i,j,k) <= 1.
+10
10
1, 1, 1, 3, 5, 9, 11, 19, 23, 33, 39, 51, 57, 75, 87, 103, 117, 143, 155, 187, 207, 235, 259, 297, 319, 363, 395, 441, 473, 525, 555, 615, 659, 721, 765, 831, 875, 959, 1017, 1091, 1147, 1239, 1291, 1397, 1467, 1553, 1631, 1743, 1813, 1937, 2023, 2141, 2233, 2379, 2465
OFFSET
0,4
COMMENTS
This sequence is in reply to an extension request made in A100450.
Note that gcd(0,m) = m for any m.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n = 0..100 from Robert Price)
MAPLE
h:= proc() true end:
b:= proc(n) local c, i, j, p;
c:=0;
for i to iquo(n, 3) do
for j from i to iquo(n-i, 2) do
if igcd(i, j, n-i-j)=1 then p:= i*j*(n-i-j);
if h(p) then h(p):= false; c:=c+1 fi
fi
od
od; c
end:
a:= proc(n) a(n):= `if`(n=0, 1, a(n-1) +2*b(n)) end:
seq(a(n), n=0..60); # Alois P. Heinz, Mar 01 2013
MATHEMATICA
f[n_] := Length[ Union[ Flatten[ Table[ If[ Abs[i] + Abs[j] + Abs[k] <= n&& GCD[i, j, k] <= 1, i*j*k, 0], {i, -n, n}, {j, -n, n}, {k, -n, n}], 2]]]; Table[ f[n], {n, 0, 100}]
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 01 2013
STATUS
approved
Number of distinct products i*j*k over all triples (i,j,k) with i,j,k>=0 and i+j+k <= n.
+10
7
1, 1, 1, 2, 3, 5, 7, 10, 13, 18, 22, 28, 33, 40, 46, 56, 64, 75, 84, 97, 109, 125, 137, 156, 170, 192, 210, 232, 251, 276, 296, 322, 347, 376, 400, 435, 463, 498, 529, 567, 600, 641, 674, 720, 758, 808, 849, 901, 942, 1001, 1051, 1110, 1157, 1225, 1275
OFFSET
0,4
COMMENTS
This sequence is in reply to an extension request made in A100450.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n = 0..200 from Robert Price)
Cristina Ballantine, George Beck, Mircea Merca, and Bruce Sagan, Elementary symmetric partitions, arXiv:2409.11268 [math.CO], 2024. See p. 20.
FORMULA
a(n) = (A213207(n)+1)/2.
MAPLE
h:= proc() true end:
b:= proc(n) local c, i, j, p;
c:=0;
for i to iquo(n, 3) do
for j from i to iquo(n-i, 2) do p:= i*j*(n-i-j);
if h(p) then h(p):= false; c:=c+1 fi
od
od; c
end:
a:= proc(n) a(n):= `if`(n=0, 1, a(n-1) +b(n)) end:
seq(a(n), n=0..60); # Alois P. Heinz, Mar 02 2013
MATHEMATICA
f[n_] := Length[ Union[ Flatten[ Table[ If[ i+j+k <= n, i*j*k, 0], {i, 0, n}, {j, 0, n}, {k, 0, n}], 2]]]; Table[ f[n], {n, 0, 200}]
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 02 2013
STATUS
approved
Number of ordered pairs (i, j) with i, j >= 0, i + j <= n and gcd(i, j) <= 1.
+10
4
1, 3, 4, 6, 8, 12, 14, 20, 24, 30, 34, 44, 48, 60, 66, 74, 82, 98, 104, 122, 130, 142, 152, 174, 182, 202, 214, 232, 244, 272, 280, 310, 326, 346, 362, 386, 398, 434, 452, 476, 492, 532, 544, 586, 606, 630, 652, 698, 714, 756, 776
OFFSET
0,2
COMMENTS
This sequence is in reply to an extension request made in A100449.
Note that gcd(0,m) = m for any m.
LINKS
MATHEMATICA
f[n_] := Length[Complement[Union[Flatten[Table[If[i + j <= n && GCD[i, j] <= 1, {i, j}], {i, 0, n}, {j, 0, n}], 1]], {Null}]]; Table[f[n], {n, 0, 100}]
PROG
(PARI) alist(N) = my(c=2); vector(N, i, if(1==i, 1, c+=eulerphi(i-1))); \\ Ruud H.G. van Tol, Jul 09 2024
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 09 2013
STATUS
approved
Number of ordered pairs (i,j) with i,j >= 0, i + j = n and gcd(i,j) <= 1.
+10
3
1, 2, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, 32, 24, 52, 18, 40, 24, 36, 28, 58, 16, 60, 30, 36, 32, 48, 20, 66
OFFSET
0,2
COMMENTS
This sequence is in reply to an extension request made in A100449.
Note that gcd(0,m) = m for any m.
Apparently a(n) = A000010(n), n >= 2. - R. J. Mathar, May 11 2013
LINKS
MATHEMATICA
f[n_]:=Length[Complement[Union[Flatten[Table[If[i+j==n&&GCD[i, j]<=1, {i, j}], {i, 0, n}, {j, 0, n}], 1]], {Null}]]; Table[f[n], {n, 0, 100}]
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 09 2013
STATUS
approved

Search completed in 0.010 seconds