Displaying 1-6 of 6 results found.
page
1
Number of iterations sqrt(sqrt(sqrt(...(n)...))) such that the result is < 3.
+10
10
0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3
COMMENTS
For the general case of "Number of iterations f(f(f(...(n)...))) such that the result is < q, where f(x) = x^(1/p), p > 1, q > 1", the resulting g.f. is g(x) = 1/(1-x)*Sum_{k>=0} x^(q^(p^k))
= (x^q + x^(q^p) + x^(q^(p^2)) + x^(q^(p^3)) + ...)/(1-x).
FORMULA
a(3^(2^n)) = a(3^(2^(n-1))) + 1, for n >= 1.
G.f.: g(x) = 1/(1-x)*Sum_{k >= 0} x^(3^(2^k))
= (x^3 + x^9 + x^81 + x^6561 + x^43946721 + ...)/(1 - x).
EXAMPLE
a(n) = 1, 2, 3, 4, 5 for n = 3^1, 3^2, 3^4, 3^8, 3^16, i.e., n = 3, 9, 81, 6561, 43946721.
MATHEMATICA
a[n_] := Length[NestWhileList[Sqrt, n, # >= 3 &]] - 1; Array[a, 100] (* Amiram Eldar, Dec 08 2018 *)
PROG
(PARI) a(n) = {my(nbi = 0); if (n < 3, return (nbi)); r = n; nbi= 1; while ((nr = sqrt(r)) >= 3, nbi++; r = nr); return (nbi); } \\ Michel Marcus, Oct 23 2014
(Python) from sympy import integer_log
Number of iterations log_10(log_10(log_10(...(n)...))) such that the result is < 2.
+10
9
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2
COMMENTS
For a general definition like "Number of iterations log_p(log_p(log_p(...(n)...))) such that the result is < q", where p > 1, q > 0, the resulting g.f. is
g(x) = 1/(1-x)*sum_{k=1..infinity} x^(E_{i=1..k} b(i,k)), where b(i,k)=p for i<k and b(i,k)=q for i=k. The explicit first terms of the g.f. are
g(x) = (x^q+x^(p^q)+x^(p^p^q)+x^(p^p^p^q)+…)/(1-x).
FORMULA
With the exponentiation definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n))))...))); E_{i=1..0} c := 1; example: E_{i=1..3} 10 = 10^(10^10) = 10^10000000000, we get:
a(E_{i=1..n} 10) = a(E_{i=1..n-1} 10)+1, for n>=1.
G.f.: g(x)= 1/(1-x)*sum_{k=1..infinity} x^(E_{i=1..k} b(i,k)), where b(i,k)=10 for i<k and b(i,k)=2 for i=k.
The explicit first terms of the g.f. are
g(x) = (x^2+x^100+x^(10^100)+...)/(1-x).
EXAMPLE
a(n) = 0, 1, 2, 3 for n = 1, 2, 10^2, 10^10^2 = 1, 2, 100, 10^100.
Number of iterations (...f_4(f_3(f_2(n))))...) such that the result is < 2, where f_j(x):=x^(1/j).
+10
8
0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
COMMENTS
Different from A001069, but equal for n < 16.
FORMULA
a(2^(n!)) = a(2^((n-1)!))+1, for n>1.
G.f.: g(x) = 1/(1-x)*Sum_{k>=1} x^(2^(k!)). The explicit first terms of the g.f. are g(x) = (x^2+x^4+x^64+x^16777216+...)/(1-x).
EXAMPLE
a(n)=1, 2, 3, 4, 5 for n=2^(1!), 2^(2!), 2^(3!), 2^(4!), 2^(5!) =2, 4, 64, 16777216, 16777216^5.
PROG
(Python)
i=1
while n: i+=1; n//=i
return(i-1)
Number of iterations f(f(f(...(n)...))) such that the result is < 2, where f(x) = cube root of x.
+10
4
0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
COMMENTS
For the general case of "Number of iterations f(f(f(...(n)...))) such that the result is < q, where f(x) = x^(1/p)", with p > 1, q > 1, the resulting g.f. is g(x) = 1/(1 - x)*Sum_{k>=0} x^(q^(p^k))
= (x^q + x^(q^p) + x^(q^(p^2)) + x^(q^(p^3)) + ...)/(1 - x).
FORMULA
a(2^(3^n)) = a(2^(3^(n-1))) + 1, for n >= 1.
G.f.: 1/(1-x)*Sum_{k>=0} x^(2^(3^k))
= (x^2 + x^8 + x^512 + x^134217728 + ...)/(1 - x).
EXAMPLE
a(n) = 1, 2, 3, 4, 5, ... for n = 2^1, 2^3, 2^9, 2^27, 2^81, ..., i.e., n = 2, 8, 512, 134217728, 2417851639229258349412352, ... = A023365.
MATHEMATICA
Table[Length[NestWhileList[Surd[#, 3]&, n, #>=2&]], {n, 90}]-1 (* Harvey P. Dale, Jan 02 2015 *)
PROG
(PARI) a(n, c=0)={while(n>=2, n=sqrtnint(n, 3); c++); c} \\ M. F. Hasler, Dec 07 2018
Number of iterations sqrt(sqrt(sqrt(...(n)...))) such that the result is < 2.
+10
3
0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
COMMENTS
Different from A001069, but equal for n < 256.
FORMULA
a(2^(2^n)) = a(2^(2^(n-1))) + 1, for n >= 1.
G.f.: g(x) = 1/(1-x)*Sum_{k>=0} x^(2^(2^k))
= (x^2 + x^4 + x^16 + x^256 + x^65536 + ...)/(1 - x).
a(n) = 1 + floor(log_2(log_2(n))) for n>=2. - Kevin Ryde, Jan 18 2024
EXAMPLE
a(n) = 1, 2, 3, 4, 5, ... for n = 2^1, 2^2, 2^4, 2^8, 2^16, ..., i.e., n = 2, 4, 16, 256, 65536, ... = A001146.
MATHEMATICA
a[n_] := Length[NestWhileList[Sqrt, n, # >= 2 &]] - 1; Array[a, 100] (* Amiram Eldar, Dec 08 2018 *)
PROG
(PARI) apply( A211667(n, c=0)={while(n>=2, n=sqrtint(n); c++); c}, [1..50]) \\ This defines the function A211667. The apply(...) provides a check and illustration. - M. F. Hasler, Dec 07 2018
(PARI) a(n) = if(n<=1, 0, logint(logint(n, 2), 2) + 1); \\ Kevin Ryde, Jan 18 2024
Number of iterations log(log(log(...(n)...))) such that the result is < 1.
+10
2
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
FORMULA
With the exponentiation definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n))))...))); E_{i=1..0} := 1; example: E_{i=1..4} 3 = 3^(3^(3^3)) = 3^(3^27), we get:
a(ceiling(E_{i=1..n} e)) = a(ceiling(E_{i=1..n-1} e))+1, for n>=1.
G.f.: g(x) = (1/(1-x))*Sum_{k>=0} x^(ceiling(E_{i=1..k} e)). The explicit first terms of the g.f. are g(x) = (x + x^3 + x^16 + x^3814280 + ...)/(1-x).
EXAMPLE
a(n)=1, 2, 3, 4, for n=1, ceiling(e), ceiling(e^e), ceiling(e^e^e), = 1, 3, 16, 3814280, respectively.
Search completed in 0.010 seconds
|