[go: up one dir, main page]

login
Search: a211606 -id:a211606
     Sort: relevance | references | number | modified | created      Format: long | short | data
Total number of inversions in all derangement permutations of [n].
+10
6
0, 0, 1, 4, 34, 260, 2275, 21784, 228676, 2614296, 32372805, 431971100, 6182204006, 94495208444, 1536740258599, 26498747241680, 482990781797000, 9279452377499504, 187442757190618761, 3971627425918503156, 88084356619901450410, 2040857112777615061300
OFFSET
0,4
LINKS
Max Alekseyev and Alois P. Heinz, Table of n, a(n) for n = 0..450 (first 100 terms from Max Alekseyev)
Wikipedia, Derangement
Wikipedia, Inversion
FORMULA
a(n) = SUM(k=0..n-2, (-1)^k * n!/k! * (3*n+k)*(n-k-1) )/12. - Max Alekseyev, Aug 13 2013
a(n) = ( (3*n^2-n+1)*A000166(n) + (n-1)*(-1)^n )/12. - Max Alekseyev, Aug 14 2013
a(n) = Sum_{k>=1} A228924(n,k) * k. - Alois P. Heinz, Sep 22 2013
a(n) ~ n! * n^2 / (4*exp(1)). - Vaclav Kotesovec, Sep 10 2014
EXAMPLE
a(2) = 1: (2,1) has 1 inversion.
a(3) = 4: (2,3,1), (3,1,2) have 2+2 = 4 inversions.
a(4) = 34: (2,1,4,3), (2,3,4,1), (2,4,1,3), (3,1,4,2), (3,4,1,2), (3,4,2,1), (4,1,2,3), (4,3,1,2), (4,3,2,1) have 2+3+3+3+4+5+3+5+6 = 34 inversions.
MAPLE
v:= proc(l) local i; for i to nops(l) do if l[i]=i then return 0 fi od;
add(add(`if`(l[i]>l[j], 1, 0), j=i+1..nops(l)), i=1..nops(l)-1)
end:
a:= n-> add(v(d), d=combinat[permute](n)):
seq(a(n), n=0..8);
# second Maple program:
a:= proc(n) option remember; `if`(n<3, n*(n-1)/2,
n*((6*n^3-26*n^2+31*n-9)*a(n-1)+(n-1)*
(6*n^2-8*n+1)*a(n-2))/((n-2)*(15-20*n+6*n^2)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Aug 13 2013
MATHEMATICA
A216239[n_] := (1/12)*n*(3*(-1)^n*n + (n*(3*n - 1) + 1)*Subfactorial[n-1]); Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Feb 05 2015, after Max Alekseyev *)
PROG
(PARI) A216239(n) = sum(k=0, n-2, (-1)^k * n!/k! * (3*n+k) * (n-k-1) )/12; /* Max Alekseyev, Aug 13 2013 */
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 15 2013
EXTENSIONS
Formula and terms a(15) onward from Max Alekseyev, Aug 13 2013
STATUS
approved
Number of inversions in all fixed-point-free involutions of {1,2,...,2n}.
+10
5
0, 1, 12, 135, 1680, 23625, 374220, 6621615, 129729600, 2791213425, 65472907500, 1663666579575, 45537716624400, 1336089255125625, 41837777148667500, 1392813754566609375, 49126088694402720000, 1830138702650463830625, 71812362934450726087500
OFFSET
0,3
COMMENTS
Also the sum of the major indices of all fixed-point-free involutions of {1,2,...,2n}. Example: a(2)=12 because the fixed-point-free involutions 2143, 3412, and 4321 have major indices 4, 2, and 6, respectively.
a(n) = Sum(k*A161123(n,k), k>=0).
For n > 0, a(n) is also the determinant absolute value of the symmetric n X n matrix M defined by M(i,j) = max(i,j)^2 for 1 <= i,j <= n. - Enrique Pérez Herrero, Jan 14 2013
LINKS
E. Pérez Herrero, Max Determinant, Psychedelic Geometry Blogspot, 15 Jan 2013
FORMULA
a(n) = n^2*(2n-1)!!.
a(n) = n^2*A001147(n). - Enrique Pérez Herrero, Jan 14 2013
a(n) = (2n)! * [x^(2n)] (x^2/2 + x^4/4)*exp(x^2/2). - Geoffrey Critzer, Mar 03 2013
D-finite with recurrence a(n) +(-2*n-7)*a(n-1) +(8*n-3)*a(n-2) +(-2*n+5)*a(n-3)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(2) = 12 because the fixed-point-free involutions 2143, 3412, and 4321 have 2, 4, and 6 inversions, respectively.
MAPLE
seq(n^2*factorial(2*n)/(factorial(n)*2^n), n = 0 .. 18);
MATHEMATICA
nn=40; Prepend[Select[Range[0, nn]!CoefficientList[Series[(x^2/2+x^4/4)Exp[x^2/2], {x, 0, nn}], x], #>0&], 0] (* Geoffrey Critzer, Mar 03 2013 *)
Table[n^2 (2n-1)!!, {n, 0, 20}] (* Harvey P. Dale, Jan 05 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 05 2009
STATUS
approved
Total number of inversions in all set partitions of [n].
+10
4
0, 0, 0, 1, 10, 74, 504, 3383, 23004, 160444, 1154524, 8594072, 66243532, 528776232, 4369175522, 37343891839, 329883579768, 3008985817304, 28312886239136, 274561779926323, 2741471453779930, 28159405527279326, 297291626845716642, 3223299667111201702
OFFSET
0,5
COMMENTS
Each set partition is written as a sequence of blocks, ordered by the smallest elements in the blocks.
FORMULA
a(n) = Sum_{k>0} k * A125810(n,k).
EXAMPLE
a(3) = 1: one inversion in 13|2.
a(4) = 10: one inversion in each of 124|3, 13|24, 13|2|4, 1|24|3, and two inversions in each of 134|2, 14|23, 14|2|3.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 03 2016
STATUS
approved
Total number of inversions in all permutations of [n] where the descent set equals the subset of odd elements in [n-1].
+10
4
0, 0, 1, 3, 18, 80, 495, 2856, 20244, 142848, 1167885, 9729280, 90858438, 872361984, 9193900443, 99947258880, 1175452387560, 14270843322368, 185456745850329, 2487099677147136, 35413726451731770, 519907295578030080, 8052572864648861703, 128451121643116822528
OFFSET
0,4
LINKS
Wikipedia, Inversion
Wikipedia, Permutation
FORMULA
a(n) = Sum_{k=1..ceiling((n-1)^2/2)} k * A337126(n,k).
From Vaclav Kotesovec, Aug 31 2020: (Start)
a(n) ~ n! * 2^n * n^2 / Pi^(n+1).
a(n) ~ 2^(n + 1/2) * n^(n + 5/2) / (Pi^(n + 1/2) * exp(n)). (End)
EXAMPLE
a(3) = 3, because in the A000111(3) = 2 permutations 213, 312 there are 3 inversions: (2,1), (3,1), (3,2).
a(4) = 18, because in the A000111(4) = 5 permutations 2143, 3142, 3241, 4132, 4231 there are 18 inversions: (2,1), (4,3), (3,1), (3,2), (4,2), (3,2), (3,1), (2,1), (4,1), (4,1), (4,3), (4,2), (3,2), (4,2), (4,3), (4,1), (2,1), (3,1).
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, [1, 0], add((p-> [0,
`if`(t=0, o-1+j, u-j)*p[1]]+p)(b(o-1+j, u-j, 1-t)), j=1..u))
end:
a:= n-> b(n, 0$2)[2]:
seq(a(n), n=0..30);
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = Expand[If[u + o == 0, 1, Sum[x^If[t == 0, o - 1 + j, u - j]*b[o - 1 + j, u - j, 1 - t], {j, 1, u}]]];
a[n_] := With[{cc = CoefficientList[b[n, 0, 0], x]}, cc.Range[0, Length[cc]-1] ];
a /@ Range[0, 30] (* Jean-François Alcover, Jan 02 2021, after Alois P. Heinz in A337126 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 18 2020
STATUS
approved
Total number of inversions in all permutations of order n consisting of a single cycle.
+10
3
0, 0, 1, 4, 22, 140, 1020, 8400, 77280, 786240, 8769600, 106444800, 1397088000, 19718899200, 297859161600, 4794806016000, 81947593728000, 1482030950400000, 28277150533632000, 567677135241216000, 11961768206868480000, 263969867887165440000
OFFSET
0,4
COMMENTS
The formula trivially follows from the observation that every pair of elements i<j forms an inversion in exactly (binomial(n,2)-n+j-i)*(n-3)! single-cycle permutations. - Max Alekseyev, Jan 05 2018
a(n) is the number of ways to partition a (n+1)X(n+1) square, with the upper left hand corner missing, into ribbons of size n, see Alexandersson, Jordan. - Per W. Alexandersson, Jun 02 2020
LINKS
Per Alexandersson, Linus Jordan, Enumeration of border-strip decompositions, arXiv:1805.09778 [math.CO], 2018.
Per Alexandersson, Linus Jordan, Enumeration of border-strip decompositions, Journal of Integer Sequences, Vol. 22 (2019), Article 19.4.5.
FORMULA
For n>2, a(n) = n! * (3*n-1)/12. - Vaclav Kotesovec, Feb 14 2014
EXAMPLE
a(3) = 4 because the cyclic 3-permutations: (1,2,3), (1,3,2) written in one line (sequence) notation: {2,3,1}, {3,1,2} have 2 + 2 = 4 inversions.
MATHEMATICA
Table[Total[Map[Inversions, Map[FromCycles, Map[List, Map[Prepend[#, n]&, Permutations[n-1]]]]]], {n, 1, 8}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Sep 21 2013
EXTENSIONS
a(13)-a(15) from Alois P. Heinz, Sep 26 2013
Terms a(16) and beyond from Max Alekseyev, Jan 05 2018
STATUS
approved
Irregular triangle read by rows: T(n,k) is the number of involutions of length n that have exactly k inversions; n>=0, 0<=k<=binomial(n,2).
+10
2
1, 1, 1, 1, 1, 2, 0, 1, 1, 3, 1, 2, 1, 1, 1, 1, 4, 3, 3, 4, 2, 4, 1, 3, 0, 1, 1, 5, 6, 5, 9, 5, 10, 5, 9, 4, 7, 3, 3, 2, 1, 1, 1, 6, 10, 9, 16, 13, 19, 17, 19, 19, 17, 19, 13, 17, 7, 13, 3, 8, 1, 4, 0, 1, 1, 7, 15, 16, 26, 29, 34, 43, 39, 54, 41, 61, 40, 62, 36, 58, 28, 47, 21, 34, 15, 21, 10, 11, 6, 4, 3, 1, 1
OFFSET
0,6
LINKS
FORMULA
Sum_{k>=0} T(n,k)*k = A211606(n).
T(n,k) = T(n-1,k) + Sum_{j=1..n-1} T(n-2,k-2*(n-j)+1) for n>=0, k>0; T(n,k) = 0 for n<0 or k<0; T(n,0) = 1 for n>=0. - Alois P. Heinz, Mar 07 2013
EXAMPLE
T(4,3) = 2 because we have: (3,2,1,4), (1,4,3,2).
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 2, 0, 1;
1, 3, 1, 2, 1, 1, 1;
1, 4, 3, 3, 4, 2, 4, 1, 3, 0, 1;
1, 5, 6, 5, 9, 5, 10, 5, 9, 4, 7, 3, 3, 2, 1, 1;
...
MAPLE
T:= proc(n) option remember; local f, g, j; if n<2 then 1 else
f, g:= [T(n-1)], [T(n-2)]; for j to 2*n-3 by 2 do
f:= zip((x, y)->x+y, f, [0$j, g[]], 0) od; f[] fi
end:
seq(T(n), n=0..10); # Alois P. Heinz, Mar 05 2013
MATHEMATICA
Needs["Combinatorica`"];
Table[Distribution[Map[Inversions, Involutions[n]], Range[0, Binomial[n, 2]]], {n, 0, 9}]//Flatten
(* Second program: *)
zip[f_, x_List, y_List, z_] := With[{m = Max[Length[x], Length[y]]}, f[PadRight[x, m, z], PadRight[y, m, z]]];
T[n_] := T[n] = Module[{f, g, j}, If[n < 2, Return@{1}, f = T[n-1]; g = T[n-2]; For[j = 1, j <= 2*n - 3, j += 2, f = zip[Plus, f, Join[Table[0, {j}], g], 0]]]; f];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 04 2023, after Alois P. Heinz *)
CROSSREFS
Cf. A008302 (permutations of [n] with k inversions).
Cf. A000085 (row sums), A211606, A214086 (diagonal).
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Mar 04 2013
STATUS
approved

Search completed in 0.006 seconds