[go: up one dir, main page]

login
Search: a216003 -id:a216003
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes that are the sum of 25 consecutive primes.
+10
33
1259, 1361, 2027, 2267, 2633, 3137, 3389, 4057, 5153, 6257, 6553, 7013, 7451, 7901, 9907, 10499, 10799, 10949, 11579, 12401, 14369, 15013, 15329, 17377, 17903, 18251, 18427, 19309, 22441, 24023, 25057, 25229, 26041, 26699, 28111, 29017, 29207, 30707, 32939, 35051, 36583
OFFSET
1,1
COMMENTS
Such sequences already existed for all odd numbers <= 15. I chose the particular points (in A215991-A216020) so that by referring to a particular n-th term of one of these sequences, the expected range of the n-th term of an x-prime sum can be calculated for any odd x<100000.
LINKS
MAPLE
select(isprime, [seq(add(ithprime(i+k), i=1..25), k=0..250)]); # Muniru A Asiru, Feb 11 2018
MATHEMATICA
Select[ListConvolve[Table[1, 25], Prime[Range[500]]], PrimeQ] (* Jean-François Alcover, Jul 01 2018, after Harvey P. Dale *)
Select[Total/@Partition[Prime[Range[300]], 25, 1], PrimeQ] (* Harvey P. Dale, Mar 04 2023 *)
PROG
(PARI)
psumprm(m, n)={my(list=List(), s=sum(j=1, m, prime(j)), i=1); while(#list<n, s = s-prime(i)+prime(i+m); i++; if(isprime(s), listput(list, s))); Vec(list)}
psumprm(25, 40) \\ Andrew Howroyd, Feb 11 2018
(GAP) P:=Filtered([1..10^4], IsPrime);;
Filtered(List([0..250], k->Sum([1..25], i->P[i+k])), IsPrime); # Muniru A Asiru, Feb 11 2018
KEYWORD
nonn
AUTHOR
Syed Iddi Hasan, Aug 30 2012
STATUS
approved

Search completed in 0.008 seconds