[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a215944 -id:a215944
     Sort: relevance | references | number | modified | created      Format: long | short | data
Fermat pseudoprimes to base 2 divisible by 15.
+10
1
645, 1905, 18705, 55245, 62745, 72885, 215265, 451905, 831405, 1246785, 1472505, 1489665, 1608465, 1815465, 2077545, 2113665, 2882265, 4535805, 6135585, 6242685, 8322945, 9063105, 9816465, 16263105, 18137505, 19523505, 53661945, 63560685, 81612105, 81722145
OFFSET
1,1
COMMENTS
Most of the numbers in the sequence above can be written in one of just two forms: 15*(42*n + 1) and 15*(42*n - 13):
(I) numbers of the first form and the corresponding n in the brackets: 645(1), 1905(3), 1246785(1979), 2113665(3355), 2882265(4575), 6135585(9739); 6242685(9909); 8322945(13211), 81612105(129543);
(II) numbers of the second form and the corresponding n in the brackets: 18705(30), 55245(88), 72885(116), 215265(342), 831405(1320), 1815465(2882), 2077545(3298), 4535805(7200), 9816465(15582), 18137505(28790), 19523505(30990), 53661945(85178), 81722145(129718).
But these pseudoprimes can be categorized in many ways taking, beside 42, p - 1, where p is a prime divisor common to many of them (e.g., numbers of the form 15*(46*n + 43) and the corresponding n in the brackets: 62745 (90); 451905 (654); 1489665(2158); 9063105(13134); 63560685(92116)) or p + 1 (e.g., numbers of the form 15*(90*n + 67) and the corresponding n in the brackets: 1472505(1090); 16263105(12046)).
What is also interesting about these numbers: the Fermat pseudoprimes to base 2 formed with their prime divisors, different from 3 and 5 (e.g., 645 = 15*43 and 1905 = 15*127) are Fermat pseudoprimes to base 2, but also 5461 = 43*127; 18705 = 15*29*43 and 55245 = 15*29*127 are Fermat pseudoprimes to base 2, and 158369 = 29*43*127.
Note: Fermat pseudoprimes to base 2 divisible by 5 are mostly of the form 3*k or 3*k + 1; of the first 100 numbers divisible by 5 checked, fewer than 10 are of the form 3*k + 2.
LINKS
Eric Weisstein's World of Mathematics, Poulet Number
MATHEMATICA
Select[15*Range[10^6], PowerMod[2, # - 1, #] == 1 &] (* Amiram Eldar, Mar 07 2020 *)
PROG
(PARI) is_a216364(n) = {Mod(2, n)^n==2 & !isprime(n) & Mod(n, 15)==0} \\ Michael B. Porter, Jan 27 2013
CROSSREFS
Intersection of A001567 and A008597.
KEYWORD
nonn
AUTHOR
Marius Coman, Sep 05 2012
STATUS
approved

Search completed in 0.005 seconds