Displaying 1-10 of 11 results found.
a(n) = 7*(a(n-1) - a(n-2) - a(n-3)), with a(0)=3, a(1)=7, a(2)=35.
+10
18
3, 7, 35, 175, 931, 5047, 27587, 151263, 830403, 4560871, 25054435, 137642127, 756187747, 4154438295, 22824258947, 125395430335, 688917131651, 3784882096583, 20793986742179, 114241312597615, 627637106311971, 3448212648805239, 18944339609269571
COMMENTS
The Berndt-type sequence number 8 for the argument 2Pi/7 defined by trigonometric relations from "Formula" below.
We note that the following decompositions hold true: (X-cot(2*Pi/7)^n)*(X-cot(4*Pi/7)^n)*(X-cot(8*Pi/7)^n) = X^3 - sqrt(7)^(-n)*a(n)*X^2 + (-sqrt(7))^(-n)*B(n)*X
- (-sqrt(7))^(-n), and (X-tan(2*Pi/7)^n)*(X-tan(4*Pi/7)^n)*(X-tan(8*Pi/7)^n) = X^3 - B(n)*X^2 + (-1)^n*a(n)*X - (-sqrt(7))^n, where B(n) := tan(2*Pi/7)^n + tan(4*Pi/7)^n + tan(8*Pi/7)^n = (-sqrt(7) + 4*sin(2*Pi/7))^n + (-sqrt(7) + 4*sin(4*Pi/7))^n + (-sqrt(7) + 4*sin(8*Pi/7))^n. Moreover we have 2*(-1)^n*B(n) = 7^(-n/2)*(a(n)^2 - a(2*n)). For the proof of these decompositions see Witula-Slota's (Section 6) and Witula's (Remark 11) reference.
We note that the numbers a(n)*7^(-ceiling(n/3)) are all integers. Moreover from the recurrence relation: a(n+3)+7*a(n+1)=7*(a(n+2)-a(n)) it can be easily obtained the following summations formulas: 8*sum{k=1,..,n} a(2*k) = 7*(a(2*n+1)-2)-a(2*n+2), which also means that the result is divisible by 8 for every n=1,2,..., and 8*sum{k=1,..,n} a(2*k-1) = 7*(a(2*n)-2)-a(2*n+1), which implies that 7*(a(n)-2)-a(n+1) is divisible by 8 for each n=0,1,...
REFERENCES
E Hetmaniok, P Lorenc, S Damian, et al., Periodic orbits of boundary logistic map and new kind of modified Chebyshev polynomials in R. Witula, D. Slota, W. Holubowski (eds.), Monograph on the Occasion of 100th Birthday Anniversary of Zygmunt Zahorski. Wydawnictwo Politechniki Slaskiej, Gliwice 2015, pp. 325-343.
FORMULA
a(n) = (sqrt(7)^n)*(cot(2*Pi/7)^n + cot(4*Pi/7)^n + cot(8*Pi/7)^n) = (3 + 4*cos(2*Pi/7))^n + (3 + 4*cos(4*Pi/7))^n + (3 + 4*cos(8*Pi/7))^n = (-tan(2*Pi/7)*tan(4*Pi/7))^n + (-tan(2*Pi/7)*tan(8*Pi/7))^n + (-tan(4*Pi/7)*tan(8*Pi/7))^n.
G.f.: (3-14*x+7*x^2)/(1-7*x+7*x^2+7*x^3).
a(n) = x1^n + x2^n + x3^n, where x1, x2, x3 are the roots of the polynomial x^3 - 7*x^2 + 7*x + 7, that is, x1 = sqrt(7)/tan(Pi/7), x2 = sqrt(7)/tan(2*Pi/7), x3 = sqrt(7)/tan(4*Pi/7). - Kai Wang, Jul 19 2016
EXAMPLE
We have cot(2*Pi/7)^2 + cot(4*Pi/7)^2 + cot(8*Pi/7)^2 = 5, cot(2*Pi/7)^4 + cot(4*Pi/7)^4 + cot(8*Pi/7)^4 = 19, but cot(2*Pi/7)^6 + cot(4*Pi/7)^6 + cot(8*Pi/7)^6 = 563/7. Similarly the numbers sqrt(7)*(cot(2*Pi/7)^n + cot(4*Pi/7)^n + cot(8*Pi/7)^n) are integers for n=1,3,5,7 (equal to 7, 25, 103, 441, respectively), whereas for n=9 we obtain the rational value 13297/7.
MATHEMATICA
LinearRecurrence[{7, -7, -7}, {3, 7, 35}, 50]
PROG
(Magma) I:=[3, 7, 35]; [n le 3 select I[n] else 7*Self(n-1) - 7*Self(n-2) - 7*Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 25 2017
a(n) = 3*a(n-2) - a(n-3), with a(0)=3, a(1)=0, and a(2)=6.
+10
14
3, 0, 6, -3, 18, -15, 57, -63, 186, -246, 621, -924, 2109, -3393, 7251, -12288, 25146, -44115, 87726, -157491, 307293, -560199, 1079370, -1987890, 3798309, -7043040, 13382817, -24927429, 47191491, -88165104, 166501902, -311686803, 587670810, -1101562311
COMMENTS
The Berndt-type sequence number 5 for the argument 2Pi/9 defined by the first relation from the section "Formula" below. The respective sums with negative powers of the cosines form the sequence A215885. Additionally if we set b(n) = c(1)*c(2)^n + c(2)*c(4)^n + c(4)*c(1)^n and c(n) = c(4)*c(2)^n + c(1)*c(4)^n + c(2)*c(1)^n, where c(j):=2*cos(2*Pi*j/9), then the following system of recurrence equations holds true: b(n) - b(n+1) = a(n), a(n+1) - a(n) = c(n+1), a(n+2) - 2*a(n)=c(n). All three sequences satisfy the same recurrence relation: X(n+3) - 3*X(n+1) + X(n) = 0. Moreover we have a(n+1) + A215665(n) + A215666(n) = 0 since c(1) + c(2) + c(4) = 0, b(n)= A215665(n) and c(n)= A215666(n).
If X(n) = 3*X(n-2) - X(n-3), n in Z, with X(n) = a(n) for every n=0,1,..., then X(-n) = A215885(n) for every n=0,1,...
From initial values and the recurrence formula we deduce that a(n)/3 and a(3n+1)/9 are all integers. We have a(n)=3*(-1)^n * A188048(n) and a(2n)= A215455(n). Furthermore the following decomposition holds: (X - c(1)^n)*(X - c(2)^n)*(X - c(4)^n) = X^3 - a(n)*X^2 + ((a(n)^2 - a(2*n))/2)*X + (-1)^(n+1), which implies the relation (c(1)*c(2))^n + (c(1)*c(4))^n + (c(2)*c(4))^n = (-c(1))^(-n) + (-c(2))^(-n) + (-c(4))^(-n) = (a(n)^2 - a(2*n))/2.
REFERENCES
D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the ninth order, (submitted, 2012).
R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math. (in press, 2012).
FORMULA
a(n) = c(1)^n + c(2)^n + c(4)^n, where c(j) := 2*cos(2*Pi*j/9).
G.f.: 3*(1-x^2)/(1-3*x^2+x^3).
EXAMPLE
We have c(1)^2 + c(2)^2 + c(4)^2 + 2*(c(1)^3 + c(2)^3 + c(4)^3) = 0 and 3*a(7) + a(8) = a(3).
MATHEMATICA
LinearRecurrence[{0, 3, -1}, {3, 0, 6}, 50].
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3), with a(0)=1, a(1)=3, a(2)=8.
+10
11
1, 3, 8, 23, 70, 220, 703, 2265, 7327, 23748, 77043, 250054, 811760, 2635519, 8557089, 27784091, 90213440, 292919743, 951102166, 3088205812, 10027335807, 32558546329, 105716922615, 343260670908, 1114560365179, 3618954723062, 11750672095144, 38154192502527
COMMENTS
The Berndt-type sequence number 7 for the argument 2Pi/7 defined by the relation: sqrt(7)*a(n) = s(1)*c(4)^(2*n) + s(2)*c(1)^(2*n) + s(4)*c(2)^(2*n), where c(j):=2*cos(2*Pi*j/7) and s(j):=2*sin(2*Pi*j/7). If we additionally defined the following sequences:
sqrt(7)*b(n) = s(2)*c(4)^(2*n) + s(4)*c(1)^(2*n) + s(1)*c(2)^(2*n),
sqrt(7)*c(n) = s(4)*c(4)^(2*n) + s(1)*c(1)^(2*n) + s(2)*c(2)^(2*n), and
sqrt(7)*a1(n) = s(1)*c(4)^(2*n+1) + s(2)*c(1)^(2*n+1) + s(4)*c(2)^(2*n+1),
sqrt(7)*b1(n) = s(2)*c(4)^(2*n+1) + s(4)*c(1)^(2*n+1) + s(1)*c(2)^(2*n+1),
sqrt(7)*c1(n) = s(4)*c(4)^(2*n+1) + s(1)*c(1)^(2*n+1) + s(2)*c(2)^(2*n+1), then the following simple relationships between elements of these sequences hold true: a(n)=c1(n), c(n+1)=a1(n), -a(n)-b(n)=b1(n), which means that the sequences a1(n), b1(n), and c1(n) are completely and in very simple way determined by the sequences a(n), b(n) and c(n). However the last one's satisfy the following system of recurrence equations: a(n+1) = 2*a(n) + b(n), b(n+1) = a(n) + 2*b(n) - c(n), c(n+1) = c(n) - b(n). We have b(n)= A215694(n) and c(n)= A215695(n).
We note that a(n)= A000782(n) for every n=0,1,...,4 and A000782(5)-a(5)=2.
From general recurrence relation: a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3), i.e. a(n) = 5*(a(n-1)-a(n-2)) + (a(n-3)-a(n-2)) the following summation formula can be easily obtained: sum{k=3,..,n} a(k) = 5*a(n-1)-a(n-2)+a(0)-5*a(1). Hence in discussed sequence it follows that: sum{k=3,..,n} a(k) = 5*a(n-1) - a(n-2) - 14.
FORMULA
G.f.: (1-2*x-x^2)/(1-5*x+6*x^2-x^3).
EXAMPLE
We have a(6) = 10*a(4)+a(1), a(5) = 11*(a(3)-a(1)), a(10)-a(4)+a(3)+a(1)+a(0) = 77*10^3, and a(11)-a(4)+a(3)-a(2)+a(0) = 25*10^4 = (5^6)*(2^4).
MATHEMATICA
LinearRecurrence[{5, -6, 1}, {1, 3, 8}, 50]
PROG
(PARI) x='x+O('x^30); Vec((1-2*x-x^2)/(1-5*x+6*x^2-x^3)) \\ G. C. Greubel, Apr 23 2018
(Magma) I:=[1, 3, 8]; [n le 3 select I[n] else 5*Self(n-1) - 6*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 23 2018
CROSSREFS
Cf. A215694, A215695, A215007, A215008, A215143, A215493, A215494, A215510, A215575, A215455, A214683, A214699.
a(n) = - 6*a(n-1) - 9*a(n-2) - 3*a(n-3) with a(0)=3, a(1)=-6, a(2)=18.
+10
11
3, -6, 18, -63, 234, -891, 3429, -13257, 51354, -199098, 772173, -2995218, 11619045, -45073827, 174857211, -678335958, 2631522330, -10208681991, 39603398850, -153636822171, 596016389349, -2312177133105, 8969825761002
COMMENTS
The Berndt-type sequence number 2 for the argument 2Pi/9 . Similarly like the respective sequence number 1 -- see A215455 -- the sequence a(n) is connected with the following general recurrence relation: X(n+3) + 6*X(n+2) + 9*X(n+1) + ((2*cos(3*g))^2)*X(n) = 0, X(0)=3, X(1)=-6, X(2)=18. The Binet formula for this one has the form: X(n) = (-4)^n*((cos(g))^(2*n) + cos(g+Pi/3))^(2*n) + cos(g-Pi/3))^(2*n)) - for details see Witula-Slota's reference and comments to A215455.
The characteristic polynomial of a(n) has the form x^3 + 6*x^2 + 9*x + 3 = (x + (2*cos(Pi/18))^2)*(x+(2*cos(5*Pi/18))^2)*(x+(2*cos(7*Pi/18))^2). We note that (2*cos(Pi/18))^2 = 2 - c(4), (2*cos(5*Pi/18))^2 = 2 - c(2), and (2*cos(7*Pi/18))^2 = 2 - c(1), where c(j) = 2*cos(2*Pi*j/9) - see trigonometric relations for A215455. Furthermore all numbers a(n)*3^(-ceiling((n+1)/3)) are integers.
REFERENCES
R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
FORMULA
a(n) = (-4)^n*((cos(Pi/18))^(2*n) + (cos(5*Pi/18))^(2*n) + (cos(7*Pi/18))^(2*n)).
G.f.: (3 + 12*x + 9*x^2)/(1 + 6*x + 9*x^2 + 3*x^3).
a(n)*(-1)^n = s(1)^(2*n) + s(2)^(2*n) + s(4)^(2*n), where s(j) := 2*sin(2*Pi*j/9) -- for the proof see Witula's book. The respective sums with odd powers of sines in A216757 are given. - Roman Witula, Sep 15 2012
MATHEMATICA
LinearRecurrence[{-6, -9, -3}, {3, -6, 18}, 50]
CoefficientList[Series[(3 + 12 x + 9 x^2)/(1 + 6 x + 9 x^2 + 3 x^3), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 30 2017 *)
PROG
(Magma) I:=[3, -6, 18]; [n le 3 select I[n] else -6*Self(n-1)-9*Self(n-2)-3*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Aug 30 2017
CROSSREFS
Cf. A215455, A215635, A215636, A215664, A215885, A215665, A215666, A215829, A215831, A215917, A215919, A215945, A216034, A215948, A216757.
a(n) = 3*a(n-2) - a(n-3), with a(0)=0, a(1)=a(2)=-3.
+10
9
0, -3, -3, -9, -6, -24, -9, -66, -3, -189, 57, -564, 360, -1749, 1644, -5607, 6681, -18465, 25650, -62076, 95415, -211878, 348321, -731049, 1256841, -2541468, 4501572, -8881245, 16046184, -31145307, 57019797, -109482105, 202204698, -385466112, 716096199
COMMENTS
The Berndt-type sequence number 6 for the argument 2Pi/9 defined by the first relation from the section "Formula" below. Two sequences connected with a(n) (possessing the respective numbers 5 and 7) are discussed in A215664 and A215666 - for more details see comments to A215664 and Witula's reference. We have a(n) - a(n+1) = A215664(n).
From initial values and the recurrence formula we deduce that a(n)/3 are all integers.
We note that a(10) is the first element of a(n) which is positive integer and all (-1)^n*a(n+10) are positive integer, which can be obtained from the title recurrence relation.
The following decomposition holds (X - c(1)*c(2)^n)*(X - c(2)*c(4)^n)*(X - c(4)*c(1)^n) = X^3 - a(n)*X^2 - A215917(n-1)*X + (-1)^n.
If X(n) = 3*X(n-2) - X(n-3), n in Z, with X(n) = a(n) for every n=0,1,..., then X(-n) = abs( A215919(n)) = (-1)^n* A215919(n) for every n=0,1,...
REFERENCES
R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math., (in press, 2012).
D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the nine order, (submitted, 2012).
FORMULA
a(n) = = c(1)*c(2)^n + c(2)*c(4)^n + c(4)*c(1)^n, where c(j):=2*cos(2*Pi*j/9).
G.f.: -3*x*(1+x)/(1-3*x^2+x^3).
EXAMPLE
We have a(1)=a(2)=a(8)=-3, a(3)=a(6)=-9, a(4)+a(11)=-10*a(10), and 47*a(5)=2*a(11).
MATHEMATICA
LinearRecurrence[{0, 3, -1}, {0, -3, -3}, 50].
a(n) = 3*a(n-2) - a(n-3), with a(0)=0, a(1)=-3, and a(2)=6.
+10
9
0, -3, 6, -9, 21, -33, 72, -120, 249, -432, 867, -1545, 3033, -5502, 10644, -19539, 37434, -69261, 131841, -245217, 464784, -867492, 1639569, -3067260, 5786199, -10841349, 20425857, -38310246, 72118920, -135356595, 254667006, -478188705, 899357613
COMMENTS
The Berndt-type sequence number 7 for the argument 2Pi/9 defined by the first relation from the section "Formula" below. Two sequences connected with a(n) (possessing the respective numbers 5 and 6) are discussed in A215664 and A215665 - for more details see comments to A215664 and Witula's reference. We have a(n) = A215664(n+2) - 2* A215664(n) and a(n+1) = A215664(n+1) - A215664(n).
From initial values and the title recurrence formula we deduce that a(n)/3 and a(3*n)/9 are all integers.
If we set X(n) = 3*X(n-2) - X(n-3), n in Z, with a(n) = X(n), for every n=0,1,..., then X(-n) = -abs( A215917(n)) = (-1)^n* A215917(n), for every n=0,1,...
REFERENCES
R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math., (in press, 2012).
D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the nine order, (submitted, 2012).
FORMULA
a(n) = = c(4)*c(2)^n + c(1)*c(4)^n + c(2)*c(1)^n, where c(j):=2*cos(2*Pi*j/9).
G.f.: -3*x*(1-2*x)/(1-3*x^2+x^3).
EXAMPLE
We have 8*a(3)+a(6)=5*a(6)+3*a(7)=0, a(5) + a(12) = 3000, and (a(30)-1000*a(10)-a(2))/10^5 is an integer. Further we obtain c(4)*cos(4*Pi/7)^7 + c(1)*cos(8*Pi/7)^7 + c(2)*c(2*Pi/7)^7 = -15/16.
MATHEMATICA
LinearRecurrence[{0, 3, -1}, {0, 3, -6}, 50].
a(n) = - 12*a(n-1) - 54*a(n-2) - 112*a(n-3) - 105*a(n-4) -36*a(n-5) - 2*a(n-6), with a(0)=3, a(1)=-6, a(2)=18, a(3)=-60, a(4)=210, a(5)=-756.
+10
7
3, -6, 18, -60, 210, -756, 2772, -10296, 38610, -145860, 554268, -2116296, 8112462, -31201644, 120347532, -465328200, 1803025410, -6999149124, 27213719148, -105960069864, 413078158350, -1612098272460, 6297409350492, -24620247483624, 96324799842498, -377102656201956, 1477141800784668
COMMENTS
The Berndt-type sequence number 3 for the argument 2Pi/9 defined by the relation: X(n) = a(n) + b(n)*sqrt(2), where X(n) := ((cos(Pi/24))^(2*n) + (cos(7*Pi/24))^(2*n) + ((cos(3*Pi/8))^(2*n))*(-4)^n. We have b(n)= A215636(n).
We note that above formula is the Binet form of the following recurrence sequence: X(n+3) + 6*X(n+2) + 9*X(n+1) + (2 + sqrt(2))*X(n) = 0, which is a special type of the sequence X(n)=X(n;g) defined in the comments to A215634 for g:=Pi/24. The sequences a(n) and b(n) satisfy the following system of recurrence equations: a(n) = -b(n+3)-6*b(n+2)-9*b(n+1)-2*b(n), 2*b(n) = -a(n+3)-6*a(n+2)-9*a(n+1)-2*a(n).
There exists an amazing relation: (-1)^n*a(n)=3* A000984(n) for every n=0,1,...,11 and 3* A000984(12)-a(12)=6.
REFERENCES
R. Witula, D. Slota, On modified Chebyshev polynomials, J. Math. Anal. Appl., 324 (2006), 321-343.
FORMULA
G.f.:(3+30*x+108*x^2+168*x^3+105*x^4+18*x^5) / (1+12*x+54*x^2+112*x^3+105*x^4+36*x^5+2*x^6).
MATHEMATICA
LinearRecurrence[{-12, -54, -112, -105, -36, -2}, {3, -6, 18, -60, 210, -756}, 50]
PROG
(PARI) Vec((3+30*x+108*x^2+168*x^3+105*x^4+18*x^5) /(1+12*x+54*x^2+112*x^3+105*x^4+36*x^5+2*x^6)+O(x^99)) \\ Charles R Greathouse IV, Oct 01 2012
a(n) = - 12*a(n-1) - 54*a(n-2) - 112*a(n-3) - 105*a(n-4) - 36*a(n-5) - 2*a(n-6) with a(0)=a(1)=a(2)=0, a(3)=-3, a(4)=24, a(5)=-135.
+10
7
0, 0, 0, -3, 24, -135, 660, -3003, 13104, -55689, 232500, -958617, 3916440, -15890355, 64127700, -257698347, 1032023136, -4121456625, 16421256420, -65301500577, 259259758056, -1027901275131, 4070632899300, -16104283594083, 63657906293520, -251447560563465, 992593021410900
COMMENTS
The Berndt-type sequence number 4 for the argument 2Pi/9 defined by the relation: X(n) = b(n) + a(n)*sqrt(2), where X(n) := ((cos(Pi/24))^(2*n) + (cos(7*Pi/24))^(2*n) + ((cos(3*Pi/8))^(2*n))*(-4)^n. We have b(n)= A215635(n) (see also section "Example" below). For more details - see comments to A215635, A215634 and Witula-Slota's reference.
FORMULA
G.f.: (-3*x^3-12*x^4-9*x^5)/(1+12*x+54*x^2+112*x^3+105*x^4+36*x^5+2*x^6).
EXAMPLE
We have X(1)=-6, X(2)=18 and X(3)=-60-3*sqrt(2), which implies the equality: (cos(Pi/24))^6 + (cos(7*Pi/24))^6 + ((cos(3*Pi/8))^6 = (60+3*sqrt(2))/64.
MATHEMATICA
LinearRecurrence[{-12, -54, -112, -105, -36, -2}, {0, 0, 0, -3, 24, -135}, 50]
CROSSREFS
Cf. A215455, A215634, A215635, A215664, A215885, A215665, A215666, A215829, A215831, A215917, A215919, A215945, A216034, A215948, A216757.
a(n) = -3*a(n-1) + 9*a(n-2) + 3*a(n-3), with a(0)=3, a(1)=-3, a(2)=27.
+10
7
3, -3, 27, -99, 531, -2403, 11691, -55107, 263331, -1250883, 5957307, -28339875, 134882739, -641835171, 3054430539, -14535159939, 69169849155, -329162695299, 1566411248475, -7454188455651, 35472778517331, -168806797907427, 803312835011307
COMMENTS
The Berndt-type sequence number 8 for the argument 2*Pi/9 defined by the trigonometric relations from the Formula section below.
From the general recurrence relation: b(n) = -3*b(n-1) + 9*b(n-2) + 3*b(n-3), i.e., b(n) - b(n-2) = 8*b(n-2) + 3(b(n-3) - b(n-1)) the following summation formulas can be easily deduced: b(2*n+1) + 3*b(2*n) - 3*b(0) - b(1) = 8*Sum_{k=1..n} b(2*k-1) and b(2*n+2) + 3*b(2*n+1) - b(2) - 3*b(1) = 8*Sum_{k=1..n} b(2*k). Hence it follows that (a(2*n+1) + 3*a(2*n))/2 are all integers congruent to 3 modulo 4, and (a(2*n+2) + 3*a(2*n+1))/2 are all integers congruent to 1 modulo 4.
We note that all numbers 3^(-1-floor(n/3))*a(n) = A215831(n) and 3^(-n-2)*a(3*n+2) are integers.
The following decomposition holds true: (X - k(1)^n)*(X - (-k(2))^n)*(X - k(3)^n) = X^3 - sqrt(3)^(-n)*a(n)*X^2 + sqrt(3)^(-n)*T(n) - sqrt(3)^(-n), where T(2*n+1) = sqrt(3)* A215945(n) and T(2*n) = A215948(n). [ Roman Witula, Aug 30 2012]
REFERENCES
D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the nine order, (submitted, 2012).
FORMULA
a(n) = (k(1)^n + (-k(2))^n + k(4)^n)*(sqrt(3))^n = (-1+4*c(1))^n + (-1+4*c(2))^n + (-1+4*c(4))^n, where k(j) := cot(2*Pi*j/9) and c(j) := cos(2*Pi*j/9).
G.f.: (3 + 6*x - 9*x^2)/(1 + 3*x - 9*x^2 - 3*x^3). [corrected by Georg Fischer, May 10 2019]
EXAMPLE
We have k(1)^3 - k(2)^3 + k(4)^3 = -11*sqrt(3).
MATHEMATICA
LinearRecurrence[{-3, 9, 3}, {3, -3, 27}, 50]
CROSSREFS
Cf. A215945, A215948, A216034, A215455, A215634, A215635, A215636, A215664, A215665, A215666, A215831, A215575, A108716, A215794, A215828.
a(n) = 3^(-1+floor(n/2))*A(n), where A(n) = 3*A(n-1) + A(n-2) - A(n-3)/3 with A(0)=A(1)=3, A(2)=11.
+10
1
1, 1, 11, 35, 345, 1129, 11091, 36315, 356721, 1168017, 11473371, 37567443, 369023049, 1208298105, 11869049763, 38863020555, 381749439969, 1249968331809, 12278374244523, 40203278289027, 394914722339385, 1293075627640713
COMMENTS
The Berndt-type sequence number 14 for the argument 2Pi/9 defined by the relation: A(n)*(-sqrt(3))^n = t(1)^n + (-t(2))^n + t(4)^n = (-sqrt(3) + 4*s(1))^n + (-sqrt(3) - 4*s(2))^n + (-sqrt(3) + 4*s(4))^n, where s(j) := sin(2*Pi*j/9) and t(j) := tan(2*Pi*j/9).
The definitions of the other Berndt-type sequences for the argument 2Pi/9 like A215945, A215948, A216034 in Crossrefs are given.
We note that all a(2*n), n=2,3,..., are divisible by 3, and it is only when n=5 that a(2*n) is divisible by 9.
REFERENCES
D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the ninth order, (submitted, 2012).
R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math. (in press, 2012).
FORMULA
G.f.: (1+x-22*x^2+2*x^3+9*x^4+x^5)/(1-33*x^2+27*x^4-3*x^6). - Bruno Berselli, Oct 01 2012
EXAMPLE
Note that A(0)=A(1)=3, a(0)=a(1)=1, A(2)=a(2)=11, A(3)=a(3)=35, A(4)=115, a(4)=345 and A(5) = 1129/3, which implies the equality 3387*sqrt(3) = -t(1)^5 + t(2)^5 - t(4)^5.
MATHEMATICA
LinearRecurrence[{0, 33, 0, -27, 0, 3}, {1, 1, 11, 35, 345, 1129}, 25] (* Paolo Xausa, Feb 23 2024 *)
PROG
(Magma) /* By definition: */ i:=22; I:=[3, 3, 11]; A:=[m le 3 select I[m] else 3*Self(m-1)+Self(m-2)-Self(m-3)/3: m in [1..i]]; [3^(-1+Floor((n-1)/2))*A[n]: n in [1..i]]; // Bruno Berselli, Oct 02 2012
CROSSREFS
Cf. A215455, A215634- A215636, A215664, A215885, A215665, A215666, A215829, A215831, A215917, A215919, A215945, A216034, A215948, A216757.
Search completed in 0.012 seconds
|