[go: up one dir, main page]

login
Search: a208899 -id:a208899
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numerators of partial sums of a series for sqrt(5)/3.
+10
2
1, 3, 21, 17, 99, 2223, 12039, 56763, 59337, 286961, 7358781, 36088473, 183146521, 181066401, 36534213, 4535753121, 22798981683, 113528187171, 113891192583, 568042152363, 14228623114839, 71035463999307, 355598139789279
OFFSET
0,2
COMMENTS
Denominators are given by A124398.
The alternating sums over central binomial coefficients scaled by powers of 5, r(n) = Sum_{k=0..n} (-1)^k*binomial(2*k,k)/5^k, have the limit s = lim_{n-> infinity} r(n) = sqrt(5)/3. From the expansion of 1/sqrt(1+x) for x=4/5.
LINKS
Wolfdieter Lang, Rationals and more.
FORMULA
a(n) = numerator(r(n)) with the rationals r(n) = Sum_{k=0..n} (-1)^k * binomial(2*k,k)/5^k in lowest terms.
r(n) = Sum_{k=0..n} (-1)^k*((2*k-1)!!/((2*k)!!)*(4/5)^k, n>=0, with the double factorials A001147 and A000165.
EXAMPLE
a(3)=17 because r(3) = 1 - 2/5 + 6/25 - 4/25 = 17/25 = a(3)/A124398(3).
MAPLE
seq(numer(add((-1)^k*binomial(2*k, k)/5^k, k = 0..n)), n = 0..20); # G. C. Greubel, Dec 25 2019
MATHEMATICA
Table[Numerator[Sum[(-1)^k*(k+1)*CatalanNumber[k]/5^k, {k, 0, n}]], {n, 0, 20}] (* G. C. Greubel, Dec 25 2019 *)
PROG
(PARI) a(n) = numerator(sum(k=0, n, ((-1)^k)*binomial(2*k, k)/5^k)); \\ Michel Marcus, Aug 11 2019
(Magma) [Numerator(&+[(-1)^k*(k+1)*Catalan(k)/5^k: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 25 2019
(Sage) [numerator(sum((-1)^k*(k+1)*catalan_number(k)/5^k for k in (0..n))) for n in (0..20)] # G. C. Greubel, Dec 25 2019
(GAP) List([0..20], n-> NumeratorRat(Sum([0..n], k-> (-1)^k*Binomial(2*k, k)/5^k)) ); # G. C. Greubel, Dec 25 2019
CROSSREFS
Cf. A123747/A123748 partial sums for a series for sqrt(5).
Cf. A123749/A124396 partial sums for a series for 3/sqrt(5).
Cf. A124398 (denominators), A208899 (sqrt(5)/3).
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Nov 10 2006
STATUS
approved
Denominators of partial sums of a series for sqrt(5)/3.
+10
2
1, 5, 25, 25, 125, 3125, 15625, 78125, 78125, 390625, 9765625, 48828125, 244140625, 244140625, 48828125, 6103515625, 30517578125, 152587890625, 152587890625, 762939453125, 19073486328125, 95367431640625, 476837158203125
OFFSET
0,2
COMMENTS
Denominators of alternating sums over central binomial coefficients scaled by powers of 5.
Numerators are given by A124397.
For the rationals r(n) see the W. Lang link under A124397.
r(n) is not 1/3 times the rational sequence A123747/A123748 which converges to sqrt(5).
LINKS
FORMULA
a(n) = denominator(r(n)) with the rationals r(n) = Sum_{k=0..n} (-1)^k * binomial(2*k,k)/5^k, in lowest terms.
r(n) = Sum_{k=0..n} (-1)^k*((2*k-1)!!/((2*k)!!)*(4/5)^k, n>=0, with the double factorials A001147 and A000165.
EXAMPLE
a(3) = 25 because r(3)= 1 - 2/5 + 6/25 - 4/25 = 17/25 = A124397(3)/a(3).
MAPLE
seq(denom(add((-1)^k*binomial(2*k, k)/5^k, k = 0..n)), n = 0..20); # G. C. Greubel, Dec 25 2019
MATHEMATICA
Table[Denominator[Sum[(-1)^k*(k+1)*CatalanNumber[k]/5^k, {k, 0, n}]], {n, 0, 20}] (* G. C. Greubel, Dec 25 2019 *)
PROG
(PARI) a(n) = denominator(sum(k=0, n, ((-1)^k)*binomial(2*k, k)/5^k)); \\ Michel Marcus, Aug 11 2019
(Magma) [Denominator(&+[(-1)^k*(k+1)*Catalan(k)/5^k: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 25 2019
(Sage) [denominator(sum((-1)^k*(k+1)*catalan_number(k)/5^k for k in (0..n))) for n in (0..20)] # G. C. Greubel, Dec 25 2019
(GAP) List([0..20], n-> DenominatorRat(Sum([0..n], k-> (-1)^k*Binomial(2*k, k)/5^k)) ); # G. C. Greubel, Dec 25 2019
CROSSREFS
Cf. A124397 (numerators), A208899 (sqrt(5)/3).
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Nov 10 2006
STATUS
approved
Decimal expansion of the surface area of a tetrakis hexahedron with unit shorter edge length.
+10
0
1, 1, 9, 2, 5, 6, 9, 5, 8, 7, 9, 9, 9, 8, 8, 7, 8, 3, 8, 0, 8, 4, 8, 9, 2, 6, 2, 3, 3, 2, 3, 3, 4, 7, 3, 2, 5, 5, 6, 8, 3, 2, 9, 7, 9, 1, 7, 9, 2, 8, 1, 3, 7, 1, 9, 6, 1, 1, 1, 4, 5, 1, 9, 7, 5, 5, 2, 2, 7, 7, 8, 2, 7, 0, 0, 6, 8, 2, 9, 2, 7, 9, 6, 8, 7, 6, 8, 7, 6, 8
OFFSET
2,3
COMMENTS
The tetrakis hexahedron is the dual polyhedron of the truncated octahedron.
LINKS
Eric Weisstein's World of Mathematics, Tetrakis Hexahedron.
FORMULA
Equals (16/3)*sqrt(5) = (16/3)*A002163 = 16*A208899.
EXAMPLE
11.925695879998878380848926233233473255683297917928...
MATHEMATICA
First[RealDigits[16*Sqrt[5]/3, 10, 100]] (* or *)
First[RealDigits[PolyhedronData["TetrakisHexahedron", "SurfaceArea"], 10, 100]]
CROSSREFS
Cf. A374359 (volume - 1), A010532 (inradius*10), A179587 (midradius + 1), A378389 (dihedral angle).
Cf. A377341 (surface area of a truncated octahedron with unit edge).
KEYWORD
nonn,cons,easy,new
AUTHOR
Paolo Xausa, Nov 27 2024
STATUS
approved

Search completed in 0.005 seconds