[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a206279 -id:a206279
     Sort: relevance | references | number | modified | created      Format: long | short | data
Smaller of two consecutive primes whose sum is a square.
+10
17
17, 47, 71, 283, 881, 1151, 1913, 2591, 3527, 4049, 6047, 7193, 7433, 15137, 20807, 21617, 24197, 26903, 28793, 34847, 46817, 53129, 56443, 69191, 74489, 83231, 84047, 98563, 103049, 103967, 109507, 110441, 112337, 136237, 149057, 151247
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harry J. Smith)
FORMULA
a(n) = A000040(A064397(n)). - Amiram Eldar, Jun 28 2024
EXAMPLE
a(4) = 283, the next prime is 293 and 283 + 293 = 576 = 24^2.
MATHEMATICA
Transpose[Select[Partition[Prime[Range[20000]], 2, 1], IntegerQ[Sqrt[Plus@@# ]]&]][[1]] (* Harvey P. Dale, Aug 04 2009 *)
PROG
(PARI) { default(primelimit, 550655327); n=0; q=2; forprime (p=3, 550655327, if (issquare(p+q), write("b061275.txt", n++, " ", q)); q=p ) } \\ Harry J. Smith, Jul 20 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Apr 25 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org) and Asher Auel, May 15 2001
Offset changed from 0 to 1 by Harry J. Smith, Jul 20 2009
STATUS
approved
Numbers k such that k^2 is a sum of three successive primes.
+10
14
7, 11, 29, 31, 43, 151, 157, 191, 209, 217, 221, 263, 311, 359, 367, 407, 493, 533, 563, 565, 637, 781, 815, 823, 841, 859, 881, 929, 959, 997, 1013, 1019, 1021, 1087, 1199, 1211, 1297, 1353, 1471, 1573, 1613, 1683, 1685, 1733, 1735, 1739, 1751, 1761, 1769
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..255 from Zak Seidov)
FORMULA
a(n) = sqrt(prime(i) + prime(i+1) + prime(i+2)) where i = A076305(n). [Corrected by M. F. Hasler, Jan 03 2020]
EXAMPLE
7 is in this sequence because 7^2 = 49 = p(6) + p(7) + p(8) = 13 + 17 + 19.
MATHEMATICA
Select[Table[Sqrt[Sum[Prime[k], {k, n, n + 2}]], {n, 100000}], IntegerQ] (* Ray Chandler, Sep 29 2006 *)
Select[Sqrt[#]&/@(Total/@Partition[Prime[Range[90000]], 3, 1]), IntegerQ] (* Harvey P. Dale, Feb 23 2011 *)
PROG
(PARI) is(n, p=precprime(n^2/3), q=nextprime(p+1), t=n^2-p-q)=isprime(t) && t==if(t>q, nextprime(q+1), precprime(p-1)) \\ Charles R Greathouse IV, May 26 2013; edited by M. F. Hasler, Jan 03 2020
(PARI) A76304=[7]; apply( A076304(n)={if(n>#A76304, my(i=#A76304, N=A76304[i]); A76304=concat(A76304, vector(n-i, i, until( is(N+=2), ); N))); A76304[n]}, [1..99]) \\ M. F. Hasler, Jan 03 2020
CROSSREFS
Cf. A206279 (smallest of the 3 primes), A076305 (index of that prime), A080665 (squares = sums), A122560 (subsequence of primes).
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Oct 05 2002
STATUS
approved
Numbers k such that prime(k) + prime(k+1) + prime(k+2) is a square.
+10
10
6, 12, 59, 65, 112, 965, 1029, 1455, 1706, 1830, 1890, 2573, 3457, 4490, 4664, 5609, 7927, 9130, 10078, 10143, 12597, 18248, 19727, 20086, 20887, 21708, 22739, 25041, 26536, 28511, 29346, 29664, 29774, 33387, 39945, 40677, 46136, 49869, 58135
OFFSET
1,1
COMMENTS
See A076304 for the square roots of the sums of the three primes.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..600 from Harvey P. Dale)
FORMULA
a(n) = A000720(A206279(n)). - M. F. Hasler, Jan 03 2020
EXAMPLE
6 is a term because prime(6) + prime(7) + prime(8) = 13 + 17 + 19 = 49 = 7^2.
MATHEMATICA
Select[Range[60000], IntegerQ[Sqrt[Sum[Prime[k], {k, #, # + 2}]]] &] (* Ray Chandler, Sep 26 2006 *)
Position[Partition[Prime[Range[60000]], 3, 1], _?(IntegerQ[Sqrt[ Total[ #]]]&), 1, Heads->False]//Flatten (* Harvey P. Dale, Sep 28 2018 *)
PROG
(PARI) n=0; p=2; q=3; forprime(r=5, 1e9, n++; if(issquare(p+q+r), print1(n", ")); p=q; q=r) \\ Charles R Greathouse IV, Apr 07 2017
(Magma) [k:k in [1..60000]| IsSquare(&+[NthPrime(k+m):m in [0, 1, 2]])]; // Marius A. Burtea, Jan 04 2020
CROSSREFS
Cf. A076304 (square roots of sums), A080665 (squares = sums), A206279 (lesser of the primes).
Cf. A064397 (same for 2 primes), A072849 (4 primes), A166255 (70 primes), A166261 (120 primes).
KEYWORD
nonn
AUTHOR
Zak Seidov, Oct 05 2002
EXTENSIONS
Corrected by Ray Chandler, Sep 26 2006
STATUS
approved
Smallest of four consecutive primes whose sum is a square.
+10
10
5, 73, 137, 433, 569, 1217, 5171, 15859, 16631, 32027, 35677, 37619, 39191, 45767, 59029, 63997, 65011, 77813, 92401, 103669, 186601, 196201, 230387, 237161, 261089, 273517, 439559, 463747, 484397, 488573, 505511, 514079, 519803, 538739, 544627, 633599
OFFSET
1,1
LINKS
FORMULA
a(n) = A000040(A072849(n)). - Amiram Eldar, Jun 28 2024
EXAMPLE
a(4) = 433. The next three primes are 439, 443, and 449, and the sum of those four primes = 1764 = 42^2.
MATHEMATICA
Transpose[Select[Partition[Prime[Range[80000]], 4, 1], IntegerQ[Sqrt[ Total[#]]]&]][[1]]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Harvey P. Dale, Feb 05 2012
STATUS
approved
Numbers n such that triangular(n) is a sum of three successive primes.
+10
7
4, 5, 61, 82, 142, 166, 202, 233, 337, 394, 418, 422, 446, 493, 538, 661, 670, 841, 886, 1101, 1177, 1234, 1237, 1266, 1322, 1426, 1441, 1477, 1593, 1642, 1690, 1713, 1765, 1789, 1798, 1885, 1901, 1930, 1941, 2041, 2061, 2098, 2101, 2161, 2218, 2277, 2305, 2350, 2614
OFFSET
1,1
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10433 (first 800 terms from Harvey P. Dale, terms <= 10^6)
EXAMPLE
For k = 5, triangular(k) = triangular(5) = 15. 15/3 = 5. The next prime larger or equal to 5 is 5. The prime before 5 is 3. If there is a triple of consecutive primes that sum to 15 then 3 and 5 are two of them. Then the third one must be 15 - 3 - 5 = 7. 7 is prime and 3, 5 and 7 are consecutive primes (as 7 is the next larger prime than 5 or the previous prime to 3). Therefore, k = 5 is in the sequence. - David A. Corneth, Sep 18 2019
MATHEMATICA
(Sqrt[8#+1]-1)/2&/@Select[Total/@Partition[Prime[Range[ 100000]], 3, 1], OddQ[ Sqrt[8#+1]]&] (* Harvey P. Dale, Sep 18 2019 *)
PROG
(C)
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define TOP (1ULL<<30)
int main() {
unsigned long long i, j, p1, p2, r, s;
unsigned char *c = (unsigned char *)malloc(TOP/8);
memset(c, 0, TOP/8);
for (i=3; i < TOP; i+=2)
if ((c[i>>4] & (1<<((i>>1) & 7)))==0 /*&& i<(1ULL<<32)*/)
for (j=i*i>>1; j<TOP; j+=i) c[j>>3] |= 1 << (j&7);
for (p2=2, p1=3, i=5; i < TOP; i+=2)
if ((c[i>>4] & (1<<((i>>1) & 7)))==0) {
s = p2 + p1 + i;
r = sqrt(s*2);
if (r*(r+1)==s*2) printf("%llu, ", r);
p2 = p1, p1 = i;
}
return 0;
}
(PARI) upto(n) = {my(res = List(), t = 10); for(i = 5, n, c = t/3; p = nextprime(ceil(c)); q = precprime(p - 1); r = t - p - q; if(isprime(r) && nextprime(r + 1) == q || nextprime(p + 1) == r, listput(res, i - 1)); t+=i); res}
CROSSREFS
Cf. A167788 (the corresponding triangular numbers).
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, May 28 2013
STATUS
approved
Smallest of three consecutive primes whose average is a triangular number.
+10
5
18713, 27253, 35227, 45433, 138587, 251677, 283861, 425489, 462221, 463189, 486583, 634493, 694409, 826211, 943231, 1103341, 1163557, 1181927, 1214453, 1282387, 1462891, 1509439, 1925681, 1931569, 2425487, 2970689, 3041803, 3324323, 3605939, 3627451, 4096933, 5140781
OFFSET
1,1
PROG
(C)
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define TOP (1ULL<<30)
int main() {
unsigned long long i, j, p1, p2, r, s;
unsigned char *c = (unsigned char *)malloc(TOP/8);
memset(c, 0, TOP/8);
for (i=3; i < TOP; i+=2)
if ((c[i>>4] & (1<<((i>>1) & 7)))==0 /*&& i<(1ULL<<32)*/)
for (j=i*i>>1; j<TOP; j+=i) c[j>>3] |= 1 << (j&7);
for (p2=2, p1=3, i=5; i < TOP; i+=2)
if ((c[i>>4] & (1<<((i>>1) & 7)))==0) {
s = p2 + p1 + i;
if ((s%3)==0) {
s/=3;
r = sqrt(s*2);
if (r*(r+1)==s*2) printf("%llu, ", p2);
}
p2 = p1, p1 = i;
}
return 0;
}
CROSSREFS
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, May 28 2013
STATUS
approved
Smallest of five consecutive primes whose sum is a square.
+10
4
181, 199, 317, 3529, 3733, 4177, 4663, 9049, 15329, 15991, 19577, 24907, 43607, 47017, 58073, 84223, 86843, 146191, 152417, 156623, 175543, 217559, 227671, 288461, 308999, 323077, 331249, 333323, 354301, 390289, 397037, 407249, 474923, 476137, 491059, 520339
OFFSET
1,1
LINKS
EXAMPLE
a(4) = 3529. The next four primes are 3533, 3539, 3541, and 3547, and the sum of all five primes = 17689 = 133^2.
MAPLE
count:= 0: Res:= NULL:
for y from 10 while count < 100 do
target:= y^2;
t:= prevprime(ceil(target/5));
s:= prevprime(t);
r:= prevprime(s);
q:= prevprime(r);
p:= prevprime(q);
u:= p+q+r+s+t;
while u < target do
p:= q; q:= r; r:= s; s:= t; t:= nextprime(t);
u:= p+q+r+s+t;
od;
if u = target then
count:= count+1; Res:= Res, p;
fi
od:
Res; # Robert Israel, Oct 20 2020
MATHEMATICA
Transpose[Select[Partition[Prime[Range[80000]], 5, 1], IntegerQ[Sqrt[ Total[#]]]&]][[1]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Harvey P. Dale, Feb 05 2012
STATUS
approved
Smallest of three consecutive primes whose sum is a triangular number.
+10
3
2, 3, 619, 1123, 3373, 4603, 6829, 9067, 18973, 25933, 29179, 29741, 33211, 40583, 48313, 72923, 74923, 117991, 130973, 202201, 231067, 253993, 255217, 267317, 291491, 339139, 346309, 363829, 423191, 449621, 476279, 489337, 519487, 533713, 539093, 592507, 602603, 621133
OFFSET
1,1
LINKS
MAPLE
R:= 2: count:= 1:
for k from 1 while count < 100 do
for j from 1 to 2 do
m:= 4*k+j;
x:= m*(m+1)/2;
q= prevprime(ceil(x/3));
p:= prevprime(q); r:= nextprime(q);
t:= p+q+r;
if t < x then while t < x do p:= q; q:= r; r:= nextprime(r); t:=p+q+r od
elif t > x then while t > x do r:= q; q:= p; p:= prevprime(p); t:= p+q+r od
fi;
if t = x then R:= R, p; count:= count+1; fi
od od :
R; # Robert Israel, Oct 18 2021
PROG
(C)
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define TOP (1ULL<<30)
int main() {
unsigned long long i, j, p1, p2, r, s;
unsigned char *c = (unsigned char *)malloc(TOP/8);
memset(c, 0, TOP/8);
for (i=3; i < TOP; i+=2)
if ((c[i>>4] & (1<<((i>>1) & 7)))==0 /*&& i<(1ULL<<32)*/)
for (j=i*i>>1; j<TOP; j+=i) c[j>>3] |= 1 << (j&7);
for (p2=2, p1=3, i=5; i < TOP; i+=2)
if ((c[i>>4] & (1<<((i>>1) & 7)))==0) {
s = p2 + p1 + i;
r = sqrt(s*2);
if (r*(r+1)==s*2) printf("%llu, ", p2);
p2 = p1, p1 = i;
}
return 0;
}
CROSSREFS
Cf. A167788 (the resulting triangular numbers).
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, May 28 2013
STATUS
approved
Smallest of three consecutive primes whose average is a square.
+10
3
2393, 25913, 47951, 123191, 131759, 219953, 330611, 356387, 450227, 769117, 826271, 870479, 1026143, 1500613, 1515347, 1697797, 1846861, 1907141, 2013541, 2217107, 2486873, 2732383, 3229189, 3294191, 3956101, 4338871, 4481677, 4739297, 5022067, 5239511, 5294591, 5774387
OFFSET
1,1
MATHEMATICA
Select[Partition[Prime[Range[400000]], 3, 1], IntegerQ[Sqrt[Mean[#]]]&][[All, 1]] (* Harvey P. Dale, Jan 10 2021 *)
PROG
(C)
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define TOP (1ULL<<30)
int main() {
unsigned long long i, j, p1, p2, r, s;
unsigned char *c = (unsigned char *)malloc(TOP/8);
memset(c, 0, TOP/8);
for (i=3; i < TOP; i+=2)
if ((c[i>>4] & (1<<((i>>1) & 7)))==0 /*&& i<(1ULL<<32)*/)
for (j=i*i>>1; j<TOP; j+=i) c[j>>3] |= 1 << (j&7);
for (p2=2, p1=3, i=5; i < TOP; i+=2)
if ((c[i>>4] & (1<<((i>>1) & 7)))==0) {
s = p2 + p1 + i;
if ((s%3)==0) {
s/=3;
r = sqrt(s);
if (r*r==s) printf("%llu, ", p2);
}
p2 = p1, p1 = i;
}
return 0;
}
CROSSREFS
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, May 28 2013
STATUS
approved
Numbers n such that n^2 is an average of three successive primes.
+10
2
49, 161, 219, 351, 363, 469, 575, 597, 671, 877, 909, 933, 1013, 1225, 1231, 1303, 1359, 1381, 1419, 1489, 1577, 1653, 1797, 1815, 1989, 2083, 2117, 2177, 2241, 2289, 2301, 2403, 2483, 2493, 2517, 2611, 2617, 2653, 2727, 2779, 2869, 2931, 3029, 3051, 3261, 3515, 3617
OFFSET
1,1
MATHEMATICA
Select[Sqrt[Mean[#]]&/@Partition[Prime[Range[10^6]], 3, 1], IntegerQ] (* Harvey P. Dale, Oct 23 2021 *)
PROG
(C)
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define TOP (1ULL<<30)
int main() {
unsigned long long i, j, p1, p2, r, s;
unsigned char *c = (unsigned char *)malloc(TOP/8);
memset(c, 0, TOP/8);
for (i=3; i < TOP; i+=2)
if ((c[i>>4] & (1<<((i>>1) & 7)))==0 /*&& i<(1ULL<<32)*/)
for (j=i*i>>1; j<TOP; j+=i) c[j>>3] |= 1 << (j&7);
for (p2=2, p1=3, i=5; i < TOP; i+=2)
if ((c[i>>4] & (1<<((i>>1) & 7)))==0) {
s = p2 + p1 + i;
if ((s%3)==0) {
s/=3;
r = sqrt(s);
if (r*r==s) printf("%llu, ", r);
}
p2 = p1, p1 = i;
}
return 0;
}
CROSSREFS
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, May 28 2013
STATUS
approved

Search completed in 0.006 seconds