[go: up one dir, main page]

login
Search: a205879 -id:a205879
     Sort: relevance | references | number | modified | created      Format: long | short | data
[s(k)-s(j)]/2, where the pairs (k,j) are given by A205837 and A205838.
+10
45
1, 2, 1, 3, 6, 5, 4, 10, 9, 8, 4, 16, 13, 27, 26, 25, 21, 17, 44, 43, 42, 38, 34, 17, 71, 68, 55, 116, 115, 114, 110, 106, 89, 72, 188, 187, 186, 182, 178, 161, 144, 72, 304, 301, 288, 233, 493, 492, 491, 487, 483, 466, 449, 377, 305, 798, 797, 796, 792, 788
OFFSET
1,2
COMMENTS
Let s(n)=F(n+1), where F=A000045 (Fibonacci numbers), so that s=(1,2,3,5,8,13,21,...). If c is a positive integer, there are infinitely many pairs (k,j) such that c divides s(k)-s(j). The set of differences s(k)-s(j) is ordered as a sequence at A204922. Guide to related sequences:
c....k..........j..........s(k)-s(j)....[s(k)-s(j)]/c
2....A205837....A205838....A205839......A205840
3....A205842....A205843....A205844......A205845
4....A205847....A205848....A205849......A205850
5....A205852....A205853....A205854......A205855
6....A205857....A205858....A205859......A205860
7....A205862....A205863....A205864......A205865
8....A205867....A205868....A205869......A205870
9....A205872....A205873....A205874......A205875
10...A205877....A205878....A205879......A205880
EXAMPLE
The first six terms match these differences:
s(3)-s(1) = 3-1 = 2 = 2*1
s(4)-s(1) = 5-1 = 4 = 2*2
s(4)-s(3) = 5-3 = 2 = 2*1
s(5)-s(2) = 8-2 = 6 = 2*3
s(6)-s(1) = 13-1 = 12 = 2*6
s(6)-s(3) = 13-3 = 10 = 2*5
MATHEMATICA
s[n_] := s[n] = Fibonacci[n + 1]; z1 = 400; z2 = 60;
f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];
Table[s[n], {n, 1, 30}]
u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
Table[u[m], {m, 1, z1}] (* A204922 *)
v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]
c = 2; t = d[c] (* A205556 *)
k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]
j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2
Table[k[n], {n, 1, z2}] (* A205837 *)
Table[j[n], {n, 1, z2}] (* A205838 *)
Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205839 *)
Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205840 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 01 2012
STATUS
approved
Numbers k for which 10 divides s(k)-s(j) for some j<k; each k occurs once for each such j; s(k) denotes the (k+1)-st Fibonacci number.
+10
6
6, 7, 9, 11, 12, 12, 15, 16, 16, 17, 17, 18, 18, 19, 19, 21, 21, 21, 22, 22, 22, 23, 24, 24, 24, 25, 25, 25, 26, 26, 27, 27, 27, 27, 28, 29, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33, 33, 34, 34
OFFSET
1,1
COMMENTS
For a guide to related sequences, see A205840.
EXAMPLE
The first three terms match these differences:
s(6)-s(3) = 13-3 = 10 = 10*1
s(7)-s(1) = 21-1 = 20 = 10*2
s(9)-s(4) = 55-5 = 50 = 10*5
MATHEMATICA
s[n_] := s[n] = Fibonacci[n + 1]; z1 = 600; z2 = 50;
f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];
Table[s[n], {n, 1, 30}]
u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
Table[u[m], {m, 1, z1}] (* A204922 *)
v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]
c = 10; t = d[c] (* A205876 *)
k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]
j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2
Table[k[n], {n, 1, z2}] (* A205877 *)
Table[j[n], {n, 1, z2}] (* A205878 *)
Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205879 *)
Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205880 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 02 2012
STATUS
approved
[s(k)-s(j)]/10, where the pairs (k,j) are given by A205877 and A205878, and s(k) denotes the (k+1)-st Fibonacci number.
+10
3
1, 2, 5, 11, 23, 22, 61, 122, 61, 255, 244, 418, 416, 676, 671, 1771, 1769, 1353, 2828, 2767, 2706, 4636, 7502, 7497, 6826, 12139, 12138, 12116, 19641, 15005, 31781, 31779, 31363, 30010, 51414, 83143, 134618, 83204, 217822, 166408, 83204
OFFSET
1,2
COMMENTS
For a guide to related sequences, see A205840.
EXAMPLE
The first three terms match these differences:
s(6)-s(3) = 13-3 = 10 = 10*1
s(7)-s(1) = 21-1 = 20 = 10*2
s(9)-s(4) = 55-5 = 50 = 10*5
MATHEMATICA
s[n_] := s[n] = Fibonacci[n + 1]; z1 = 600; z2 = 50;
f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];
Table[s[n], {n, 1, 30}]
u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
Table[u[m], {m, 1, z1}] (* A204922 *)
v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]
c = 10; t = d[c] (* A205876 *)
k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]
j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2
Table[k[n], {n, 1, z2}] (* A205877 *)
Table[j[n], {n, 1, z2}] (* A205878 *)
Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205879 *)
Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205880 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 02 2012
STATUS
approved

Search completed in 0.005 seconds