[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a205341 -id:a205341
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than 3.
+0
1
0, 3, 6, 35, 138, 689, 3272, 16522, 83792, 434749, 2278888, 12093271, 64741330, 349470487, 1899418046, 10387322922, 57111322368, 315523027610, 1750681516380, 9751416039535, 54507046599094, 305650440453943, 1718956630038438
OFFSET
1,2
COMMENTS
Column 3 of A205341.
Number of excursions (walks starting at the origin, ending on the x-axis, and never go below the x-axis in between) with n steps from {-3,-2,-1,1,2,3}. - David Nguyen, Dec 20 2016
LINKS
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
FORMULA
a(n) = Sum_{i=1..n}((Sum_{l=0..i}(binomial(i,l)*(Sum_{j=0=(3*(i-l))/7}((-1)^j*binomial(i-l,j)*binomial(-l+3*(-l-2*j+i)-j+i-1,3*(-l-2*j+i)-j)))*(-1)^l))*a(n-i))/n, a(0)=1. - Vladimir Kruchinin, Apr 07 2017
EXAMPLE
Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..3....3....3....1....3....1....1....3....3....2....1....3....1....3....3....3
..4....6....2....0....2....3....3....2....5....4....4....1....3....2....2....0
..2....5....5....3....4....4....2....3....4....1....2....2....0....4....0....2
..3....2....2....2....2....1....3....2....2....3....1....1....2....3....2....1
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, Sum[(Sum[Binomial[i, l] (Sum[(-1)^j Binomial[i - l, j] Binomial[-l + 3(-l - 2j + i) - j + i - 1, 3(-l - 2j + i) - j], {j, 0, (3(i - l))/7}]) (-1)^l, {l, 0, i}]) a[n - i], {i, 1, n}]/n];
a /@ Range[1, 23] (* Jean-François Alcover, Sep 24 2019, after Vladimir Kruchinin *)
PROG
(Maxima)
a(n):=if n=0 then 1 else sum((sum(binomial(i, l)*(sum((-1)^j*binomial(i-l, j)*binomial(-l+3*(-l-2*j+i)-j+i-1, 3*(-l-2*j+i)-j), j, 0, (3*(i-l))/7))*(-1)^l, l, 0, i))*a(n-i), i, 1, n)/n; /* Vladimir Kruchinin, Apr 07 2017 */
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 26 2012
STATUS
approved
Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than 4.
+0
2
0, 4, 12, 82, 454, 2912, 18652, 124299, 841400, 5800725, 40506816, 286137616, 2040430976, 14670243774, 106225269954, 773958961125, 5670067999156, 41742291894425, 308645064367896, 2291123920091484, 17067970534656790
OFFSET
1,2
COMMENTS
Column 4 of A205341.
Number of excursions (walks starting at the origin, ending on the x-axis, and never go below the x-axis in between) with n steps from {-4,-3,-2,-1,1,2,3,4}. - David Nguyen, Dec 20 2016
LINKS
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
FORMULA
a(n) = Sum_{i=1..n}((Sum_{l=0..i}(binomial(i,l)*(Sum_{j=0..(4*(i-l))/9}((-1)^j*binomial(i-l,j)*binomial(-l+4*(-l-2*j+i)-j+i-1,4*(-l-2*j+i)-j)))*(-1)^l))*a(n-i))/n, a(0)=1. - Vladimir Kruchinin, Apr 07 2017
EXAMPLE
Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..2....3....2....4....4....4....1....2....4....3....3....1....2....3....2....4
..3....5....6....3....0....5....0....4....6....1....5....0....3....1....0....2
..6....1....2....2....1....3....3....6....3....4....3....1....6....2....1....5
..2....2....1....1....3....4....1....4....4....2....4....2....4....3....4....2
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Binomial[i, l] Sum[(-1)^j Binomial[i - l, j] Binomial[-l + 4(-l - 2j + i) - j + i - 1, 4(-l - 2j + i) - j], {j, 0, (4(i - l))/9}] (-1)^l, {l, 0, i}] a[n - i], {i, 1, n}]/n];
a /@ Range[1, 21] (* Jean-François Alcover, Sep 24 2019, after Vladimir Kruchinin *)
PROG
(Maxima)
a(n):=if n=0 then 1 else sum(sum(binomial(i, l)*sum((-1)^j*binomial(i-l, j)*binomial(-l+4*(-l-2*j+i)-j+i-1, 4*(-l-2*j+i)-j), j, 0, (4*(i-l))/9)*(-1)^l, l, 0, i)*a(n-i), i, 1, n)/n; /* Vladimir Kruchinin, Apr 07 2017 */
CROSSREFS
Cf. A205341.
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 26 2012
STATUS
approved
Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than 5.
+0
1
0, 5, 20, 160, 1130, 8927, 71630, 594405, 5025740, 43243674, 377127756, 3327001441, 29634744950, 266164547110, 2407763862342, 21918167505714, 200631620380132, 1845576127894008, 17052050519557200, 158176470846492722
OFFSET
1,2
COMMENTS
Column 5 of A205341.
LINKS
FORMULA
a(n) = Sum_{i=1..n}((Sum_{l=0..i}(binomial(i,l)*(Sum_{j=0..(5*(i-l))/11}((-1)^j*binomial(i-l,j)*binomial(-l+5*(-l-2*j+i)-j+i-1,5*(-l-2*j+i)-j)))*(-1)^l))*a(n-i))/n, a(0)=1. - Vladimir Kruchinin, Apr 07 2017
EXAMPLE
Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..5....5....5....2....5....5....4....2....3....2....2....2....4....1....3....1
..8....6...10....3....8....4....6....1....5....5....6....5....7....4....1....4
..3....9....9....0....5....0....2....5....0....4....1....3....4....5....2....7
..1....4....5....3....2....2....3....2....1....3....4....4....2....3....1....3
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
PROG
(Maxima)
a(n):=if n=0 then 1 else sum((sum(binomial(i, l)*(sum((-1)^j*binomial(i-l, j)*binomial(-l+5*(-l-2*j+i)-j+i-1, 5*(-l-2*j+i)-j), j, 0, (5*(i-l))/11))*(-1)^l, l, 0, i))*a(n-i), i, 1, n)/n; /* Vladimir Kruchinin, Apr 07 2017 */
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 26 2012
STATUS
approved
Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than 6
+0
1
0, 6, 30, 277, 2370, 22297, 214724, 2133784, 21632020, 223143400, 2333651994, 24689732388, 263770658256, 2841616524516, 30835061022020, 336721385300276, 3697585562072924, 40805356360923728, 452314009660461816
OFFSET
1,2
COMMENTS
Column 6 of A205341
LINKS
EXAMPLE
Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..3....1....5....3....6....2....5....2....3....5....5....3....3....3....3....5
..1....3....4....1....4....5....8....4....5....2....9....2....0....7....1....4
..5....9....8....0....2....0....7....3....0....3....8....7....6...10....4....9
..2....6....5....2....3....4....6....5....2....5....4....5....1....5....5....5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
KEYWORD
nonn
AUTHOR
R. H. Hardin Jan 26 2012
STATUS
approved
Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than 7
+0
1
0, 7, 42, 441, 4424, 48335, 542850, 6285127, 74286702, 893407361, 10894937088, 134418087923, 1674757658798, 21042485711561, 266318361927208, 3392084001234202, 43447635519011920, 559277626577030221
OFFSET
1,2
COMMENTS
Column 7 of A205341
LINKS
EXAMPLE
Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..4....4....5....7....2....5....6....1....2....6....4....4....2....7....4....4
..5....5...10....9....7...12....8....0....8....4....9...11....8....1....9....5
.11...12....4...11....0...14....9....1...10....8....3....4...13....5....7....0
..6....6....5....5....6....7....4....4....4....7....7....5....7....2....1....4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
KEYWORD
nonn
AUTHOR
R. H. Hardin Jan 26 2012
STATUS
approved
Number of length 5 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than n.
+0
1
2, 11, 35, 82, 160, 277, 441, 660, 942, 1295, 1727, 2246, 2860, 3577, 4405, 5352, 6426, 7635, 8987, 10490, 12152, 13981, 15985, 18172, 20550, 23127, 25911, 28910, 32132, 35585, 39277, 43216, 47410, 51867, 56595, 61602, 66896, 72485, 78377, 84580, 91102
OFFSET
1,1
COMMENTS
Row 4 of A205341.
LINKS
FORMULA
Empirical: a(n) = (4/3)*n^3 - (1/2)*n^2 + (7/6)*n.
Conjectures from Colin Barker, Jun 11 2018: (Start)
G.f.: x*(2 + 3*x + 3*x^2) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)
EXAMPLE
Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..2....5....3....2....2....1....5....2....5....4....1....5....4....4....5....2
..0....8....6....4....6....6....1....7....1....9....6....7....5....2....8....5
..3....3....5....1....5....2....2....3....5....4....5....4....2....4....5....4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
CROSSREFS
Cf. A205341.
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 26 2012
STATUS
approved
Number of length 6 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than n.
+0
1
0, 24, 138, 454, 1130, 2370, 4424, 7588, 12204, 18660, 27390, 38874, 53638, 72254, 95340, 123560, 157624, 198288, 246354, 302670, 368130, 443674, 530288, 629004, 740900, 867100, 1008774, 1167138, 1343454, 1539030, 1755220, 1993424, 2255088
OFFSET
1,2
COMMENTS
Row 5 of A205341.
LINKS
FORMULA
Empirical: a(n) = (23/12)*n^4 - (1/2)*n^3 + (1/12)*n^2 - (3/2)*n.
Conjectures from Colin Barker, Jun 11 2018: (Start)
G.f.: 2*x^2*(12 + 9*x + 2*x^2) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
EXAMPLE
Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..5....4....3....4....2....4....3....5....5....3....5....4....5....1....1....1
..1....2....2....9....5....7....6....6....2....6....0....2....2....0....6....5
..5....0....5....8....1....3....7....8....6....4....5....0....1....2....9....9
..3....4....1....5....5....1....2....4....2....5....2....1....5....1....5....4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
CROSSREFS
Cf. A205341.
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 26 2012
STATUS
approved
Number of length 7 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than n.
+0
1
5, 93, 689, 2912, 8927, 22297, 48335, 94456, 170529, 289229, 466389, 721352, 1077323, 1561721, 2206531, 3048656, 4130269, 5499165, 7209113, 9320208, 11899223, 15019961, 18763607, 23219080, 28483385, 34661965, 41869053, 50228024
OFFSET
1,1
COMMENTS
Row 6 of A205341.
LINKS
FORMULA
Empirical: a(n) = (44/15)*n^5 - (5/12)*n^4 + (5/12)*n^2 + (31/15)*n.
Conjectures from Colin Barker, Jun 11 2018: (Start)
G.f.: x*(5 + 63*x + 206*x^2 + 73*x^3 + 5*x^4) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)
EXAMPLE
Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....5....3....5....1....1....5....4....3....5....4....5....1....3....4
..6....4...10....6....0....2....4....3....8....6...10....3....8....5....1....7
..8....1....5....1....2....0....8....6....7....5....6....6....7....1....5....6
..7....4....3....5....4....4....6....5....3....3....2....7....5....5....3....7
..4....3....5....2....1....3....1....2....2....1....4....5....1....2....2....3
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
CROSSREFS
Cf. A205341.
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 26 2012
STATUS
approved
Number of length 8 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than n.
+0
1
0, 272, 3272, 18652, 71630, 214724, 542850, 1211784, 2459988, 4633800, 8215988, 13857668, 22413586, 34980764, 52940510, 78003792, 112259976, 158228928, 218916480, 297873260, 399256886, 527897524, 689366810, 890050136, 1137222300
OFFSET
1,2
COMMENTS
Row 7 of A205341.
LINKS
FORMULA
Empirical: a(n) = (841/180)*n^6 - (1/3)*n^5 - (19/36)*n^4 + (1/3)*n^3 - (103/90)*n^2 - 3*n.
Conjectures from Colin Barker, Jun 11 2018: (Start)
G.f.: 2*x^2*(136 + 684*x + 730*x^2 + 129*x^3 + 3*x^4) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..5....3....5....2....2....2....2....3....5....3....1....2....4....2....3....4
..6....7....8....6....3....4....4....4....9....5....2....5....8....6....5....7
..7....8...11....7....4....3....2....7...12....1....0....4....7....4....6....8
.10....4....9....6....3....6....7....3....7....2....4....3....3....8....3....7
..6....5....4....4....0....5....3....6....3....7....6....0....1....3....1....8
..5....3....2....3....3....4....4....2....5....2....5....2....5....5....3....3
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
CROSSREFS
Cf. A205341.
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 26 2012
STATUS
approved

Search completed in 0.005 seconds