[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a193826 -id:a193826
     Sort: relevance | references | number | modified | created      Format: long | short | data
McKay-Thompson series of class 42C for the Monster group.
+10
5
1, -1, 0, -1, 1, -1, 1, -2, 3, -2, 3, -3, 4, -4, 4, -6, 7, -7, 7, -9, 10, -12, 13, -14, 17, -18, 19, -22, 26, -28, 29, -34, 38, -41, 44, -50, 57, -60, 65, -72, 81, -86, 94, -105, 114, -124, 133, -146, 161, -174, 187, -204, 224, -240, 258, -282, 309, -332, 354, -386, 419, -450, 481, -524, 569, -606, 651, -703
OFFSET
0,8
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Given g.f. A(x), the second term of the left side of Cayley's identity is -A(q). - Michael Somos, Dec 03 2013
REFERENCES
A. Cayley, An elliptic-transcendant identity, Messenger of Math., 2 (1873), p. 179.
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of chi(-x) * chi(-x^7) in powers of x where chi() is a Ramanujan theta function.
Expansion of q^(1/3) * eta(q) * eta(q^7) / (eta(q^2) * eta(q^14)) in powers of q.
Euler transform of period 14 sequence [ -1, 0, -1, 0, -1, 0, -2, 0, -1, 0, -1, 0, -1, 0, ...].
Given g.f. A(x), then B(q) = A(q^3) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = v^2 - u^2*v - 2*u.
G.f. is a period 1 Fourier series which satisfies f(-1 / (126 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A093950.
G.f.: 1 / (Product_{k>0} (1 + x^k) * (1 + x^(7*k))).
a(n) = (-1)^n * A112212(n). a(2*n + 1) = - A093950(n). a(4*n) = A193826(n). a(4*n + 2) = A193883(n).
Convolution inverse is A093950.
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n/21)) / (2 * 21^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
EXAMPLE
G.f. = 1 - x - x^3 + x^4 - x^5 + x^6 - 2*x^7 + 3*x^8 - 2*x^9 + 3*x^10 - 3*x^11 + ...
T42C = 1/q - q^2 - q^8 + q^11 - q^14 + q^17 - 2*q^20 + 3*q^23 - 2*q^26 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] QPochhammer[ x^7, x^14], {x, 0, n}]; (* Michael Somos, Aug 06 2011 *)
a[ n_] := SeriesCoefficient[ 1 / ( Product[ 1 + x^k, {k, n}] Product[ 1 + x^k, {k, 7, n, 7}] ), {x, 0, n}]; (* Michael Somos, Aug 06 2011 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^7 + A) / (eta(x^2 + A) * eta(x^14 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jan 03 2005
STATUS
approved

Search completed in 0.004 seconds