[go: up one dir, main page]

login
Search: a193285 -id:a193285
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of allowed patterns of length n of the map f(x) = 4x(1-x) on the unit interval. A permutation pi is an allowed pattern if there exists x in [0,1] such that the values x,f(x),f(f(x)),...,f^{n-1}(x) are different and in the same relative order as pi_1,pi_2,...,pi_n.
+10
2
1, 1, 2, 5, 12, 31, 75, 178, 414, 949, 2137, 4767
OFFSET
0,3
COMMENTS
a(n) is also the number of allowed patterns of length n of the tent map x -> 1-|1-2x| in [0,1].
LINKS
S. Elizalde and Y. Liu, On basic forbidden patterns of functions, Discrete Appl. Math. 159 (2011), 1207-1216.
FORMULA
a(n) = n! - A193285(n).
EXAMPLE
a(3) = 5 because the allowed patterns of length 3 are 123, 132, 213, 231, 312.
CROSSREFS
Cf. A000142, A193285 (forbidden patterns).
KEYWORD
nonn,more
AUTHOR
Sergi Elizalde, Jul 20 2011
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Mar 02 2020
STATUS
approved
Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=n, r=3-e.
+10
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 2, 0, 1, 2, 1, 0, 2, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 0, 2, 2, 0, 2, 0, 1, 1, 1, 1, 0, 2, 0, 2, 1, 1, 1, 1, 2, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0, 2, 0
OFFSET
1,13
COMMENTS
See A194285.
EXAMPLE
First ten rows:
1
1..1
1..1..1
1..1..1..1
1..1..2..0..1
1..1..1..1..1..1
1..1..1..1..1..1..1
0..1..2..1..1..1..1..1
0..1..2..0..1..2..1..0..2..1
MATHEMATICA
r = 3-E;
f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]
g[n_, k_] := Sum[f[n, k, i], {i, 1, n}]
TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]
Flatten[%] (* A194341 *)
CROSSREFS
Cf. A193285.
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 22 2011
STATUS
approved
Number of basic forbidden patterns of length n of the map f(x)=4x(1-x) on the unit interval.
+10
0
0, 0, 1, 5, 9, 28, 53, 110, 229, 474
OFFSET
1,4
COMMENTS
A permutation pi is a forbidden pattern if there is no x in [0,1] such that the values x,f(x),f(f(x)),...,f^{n-1}(x) are in the same relative order as pi_1,pi_2,...,pi_n. A forbidden pattern is basic if it is minimally forbidden, that is, the patterns obtained by removing pi_1 or pi_n are not forbidden.
a(n) is also the number of basic forbidden patterns of length n of the tent map x -> 1-|1-2x| in [0,1].
LINKS
S. Elizalde and Y. Liu, On basic forbidden patterns of functions, arXiv:0909.2277 [math.CO], 2009.
S. Elizalde and Y. Liu, On basic forbidden patterns of functions, Discrete Appl. Math. 159 (2011), 1207-1216.
EXAMPLE
a(3) = 1 because the only basic forbidden pattern of length 3 is 321.
a(4) = 5 because the basic forbidden patterns of length 4 are 1423, 2134, 2143, 3142, 4231.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Sergi Elizalde, Jul 22 2011
STATUS
approved

Search completed in 0.005 seconds