[go: up one dir, main page]

login
Search: a190851 -id:a190851
     Sort: relevance | references | number | modified | created      Format: long | short | data
Increasing sequence generated by these rules: a(1)=1, and if x is in a then 2x-1 and 3x-1 are in a.
+10
32
1, 2, 3, 5, 8, 9, 14, 15, 17, 23, 26, 27, 29, 33, 41, 44, 45, 50, 51, 53, 57, 65, 68, 77, 80, 81, 86, 87, 89, 98, 99, 101, 105, 113, 122, 129, 131, 134, 135, 149, 152, 153, 158, 159, 161, 170, 171, 173, 177, 194, 195, 197, 201, 203, 209, 225, 230, 239, 242
OFFSET
1,2
COMMENTS
This sequence represents a class of sequences generated by rules of the form "a(1)=1, and if x is in a then hx+i and jx+k are in a, where h,i,j,k are integers." If m>1, at least one of the numbers b(m)=(a(m)-i)/h and c(m)=(a(m)-k)/j is in the set N of natural numbers. Let d(n) be the n-th b(m) in N, and let e(n) be the n-th c(m) in N. Note that a is a subsequence of both d and e.
Examples, where [A......] indicates a conjecture:
A190803: (h,i,j,k)=(2,-1,3,-1); d=A190841, e=A190842
A190804: (h,i,j,k)=(2,-1,3,0); d=[A190803], e=A190844
A190805: (h,i,j,k)=(2,-1,3,1); d=A190845, e=[A190808]
A190806: (h,i,j,k)=(2,-1,3,2); d=[A190804], e=A190848
...
A190807: (h,i,j,k)=(2,0,3,-1); d=A190849, e=A190850
A003586: (h,i,j,k)=(2,0,3,0); d=e=A003586
A190808: (h,i,j,k)=(2,0,3,1); d=A190851, e=A190852
A190809: (h,i,j,k)=(2,0,3,2); d=A190853, e=A190854
...
A190810: (h,i,j,k)=(2,1,3,-1); d=A190855, e=A190856
A190811: (h,i,j,k)=(2,1,3,0); d=A002977, e=A190857
A002977: (h,i,j,k)=(2,1,3,1); d=A190858, e=A190859
A190812: (h,i,j,k)=(2,1,3,2); d=A069353, e=[A190812]
...
For h=j=3, see A191106; for h=3 and j=4, see A191113.
LINKS
David Garth and Adam Gouge, Affinely Self-Generating Sets and Morphisms, Journal of Integer Sequences, 10 (2007) 1-13.
EXAMPLE
1 -> 2 -> 3,5 -> 8,9,14 -> 15,17,23,26,27,41 -> ...
MATHEMATICA
h = 2; i = -1; j = 3; k = -1; f = 1; g = 10;
a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A190803 *)
b = (a + 1)/2; c = (a + 1)/3; r = Range[1, 300];
d = Intersection[b, r] (* A190841 *)
e = Intersection[c, r] (* A190842 *)
(* Regarding this program - useful for many choices of h, i, j, k, f, g - the depth g must be chosen with care - that is, large enough. Assuming that h<=j, the least new terms in successive nests a are typically iterates of hx+i, starting from x=1. If, for example, h=2 and i=0, the least terms are 2, 4, 8, ..., 2^g, so that g>=9 ensures inclusion of all the desired terms <=256. *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a190803 n = a190803_list !! (n-1)
a190803_list = 1 : f (singleton 2)
where f s = m : (f $ insert (2*m-1) $ insert (3*m-1) s')
where (m, s') = deleteFindMin s
-- Reinhard Zumkeller, Jun 01 2011
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 25 2011
EXTENSIONS
a(34)=225 inserted by Reinhard Zumkeller, Jun 01 2011
STATUS
approved
Increasing sequence generated by these rules: a(1)=1, and if x is in a then 2x and 3x+1 are in a.
+10
5
1, 2, 4, 7, 8, 13, 14, 16, 22, 25, 26, 28, 32, 40, 43, 44, 49, 50, 52, 56, 64, 67, 76, 79, 80, 85, 86, 88, 97, 98, 100, 104, 112, 121, 128, 130, 133, 134, 148, 151, 152, 157, 158, 160, 169, 170, 172, 176, 193, 194, 196, 200, 202, 208, 224, 229, 238, 241, 242, 256
OFFSET
1,2
COMMENTS
See A190803.
LINKS
MATHEMATICA
h = 2; i = 0; j = 3; k = 1; f = 1; g = 9 ;
a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A190808 *)
b = a/2; c = (a - 1)/3; r = Range[1, 900];
d = Intersection[b, r] (* A190851 *)
e = Intersection[c, r] (* A190852 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a190808 n = a190808_list !! (n-1)
a190808_list = f $ singleton 1
where f s = m : (f $ insert (2*m) $ insert (3*m+1) s')
where (m, s') = deleteFindMin s
-- Reinhard Zumkeller, Jun 01 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 20 2011
EXTENSIONS
a(55)=224 inserted by Reinhard Zumkeller, Jun 01 2011
STATUS
approved
Integers in (-1+A190808)/3; contains A190808 as a proper subsequence.
+10
3
1, 2, 4, 5, 7, 8, 9, 13, 14, 16, 17, 21, 22, 25, 26, 28, 29, 32, 33, 37, 40, 43, 44, 49, 50, 52, 53, 56, 57, 64, 65, 67, 69, 76, 79, 80, 85, 86, 88, 89, 97, 98, 100, 101, 104, 105, 112, 113, 117, 121, 128, 129, 130, 133, 134, 148, 149, 151, 152, 157, 158, 160, 161, 169, 170, 172, 173, 176, 177, 193, 194, 196, 197, 200, 201, 202, 208, 209
OFFSET
1,2
COMMENTS
See A190803.
MATHEMATICA
(See A190808.)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 25 2011
STATUS
approved

Search completed in 0.006 seconds