[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a199592 -id:a199592
     Sort: relevance | references | number | modified | created      Format: long | short | data
Generalized Fermat numbers: 3^(2^n)+1, n >= 0.
+10
16
4, 10, 82, 6562, 43046722, 1853020188851842, 3433683820292512484657849089282, 11790184577738583171520872861412518665678211592275841109096962
OFFSET
0,1
COMMENTS
Generalized Fermat numbers (Ribenboim (1996))
F_n(a) := F_n(a,1) = a^(2^n) + 1, a >= 2, n >= 0, can't be prime if a is odd (as is the case for this sequence). - Daniel Forgues, Jun 19-20 2011
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10 (shortened by N. J. A. Sloane, Jan 13 2019)
Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.
C. K. Caldwell, "Top Twenty" page, Generalized Fermat Divisors (base=3).
Wilfrid Keller, GFN3 factoring status.
Eric Weisstein's World of Mathematics, Generalized Fermat Number.
FORMULA
a(0) = 4; a(n) = (a(n-1)-1)^2 + 1, n >= 1.
a(n) = A011764(n)+1 = A059918(n+1)/A059918(n) = (A059917(n+1)-1)/(A059917(n)-1) = (A059723(n)/A059723(n+1))*(A059723(n+2)-A059723(n+1))/(A059723(n+1)-A059723(n))
a(n) = A057727(n)-1. - R. J. Mathar, Apr 23 2007
a(n) = 2*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 2*(empty product, i.e., 1) + 2 = 4 = a(0).
The above formula implies the GCD of any pair of terms is 2, which means that the terms of (3^(2^n)+1)/2 (A059917) are pairwise coprime. - Daniel Forgues, Jun 20 & 22 2011
Sum_{n>=0} 2^n/a(n) = 1/2. - Amiram Eldar, Oct 03 2022
EXAMPLE
a(0) = 3^(2^0)+1 = 3^1+1 = 4 = 2*(1)+2 = 2*(empty product)+2;
a(1) = 3^(2^1)+1 = 3^2+1 = 10 = 2*(4)+2;
a(2) = 3^(2^2)+1 = 3^4+1 = 82 = 2*(4*10)+2;
a(3) = 3^(2^3)+1 = 3^8+1 = 6562 = 2*(4*10*82)+2;
a(4) = 3^(2^4)+1 = 3^16+1 = 43046722 = 2*(4*10*82*6562)+2;
a(5) = 3^(2^5)+1 = 3^32+1 = 1853020188851842 = 2*(4*10*82*6562*43046722)+2;
MAPLE
A059919:=n->3^(2^n)+1; seq(A059919(n), n=0..7); # Wesley Ivan Hurt, Jan 22 2014
MATHEMATICA
Table[3^2^n + 1, {n, 0, 7}] (* Arkadiusz Wesolowski, Nov 02 2012 *)
PROG
(PARI) { for (n=0, 11, write("b059919.txt", n, " ", 3^(2^n) + 1); ) } \\ Harry J. Smith, Jun 30 2009
(Magma) [3^(2^n) + 1: n in [0..8]]; // Vincenzo Librandi, Jun 20 2011
CROSSREFS
Cf. A000215 (Fermat numbers: 2^(2^n) + 1, n >= 0).
Cf. A059917 ((3^(2^n)+1)/2).
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Feb 08 2001
EXTENSIONS
Edited by Daniel Forgues, Jun 19 2011 and Jun 20 2011
STATUS
approved
Generalized Fermat numbers: 10^(2^n) + 1, n >= 0.
+10
14
11, 101, 10001, 100000001, 10000000000000001, 100000000000000000000000000000001, 10000000000000000000000000000000000000000000000000000000000000001
OFFSET
0,1
COMMENTS
As for standard Fermat numbers 2^(2^n) + 1, a number (2b)^m + 1 (with b > 1) can only be prime if m is a power of 2. On the other hand, out of the first 12 base-10 Fermat numbers, only the first two are primes.
Also, binary representation of Fermat numbers (in decimal, see A000215).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..9 (shortened by N. J. A. Sloane, Jan 13 2019)
Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.
C. K. Caldwell, "Top Twenty" page, Generalized Fermat Divisors (base=10).
Wilfrid Keller, GFN10 factoring status.
Romeo Meštrović, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670, 2012 - From N. J. A. Sloane, Jun 13 2012
Eric Weisstein's World of Mathematics, Generalized Fermat Number.
FORMULA
a(0) = 11; a(n) = (a(n - 1) - 1)^2 + 1.
a(n) = 9*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 9*(empty product, i.e., 1)+ 2 = 11 = a(0). - Daniel Forgues, Jun 20 2011
Sum_{n>=0} 2^n/a(n) = 1/9. - Amiram Eldar, Oct 03 2022
EXAMPLE
a(0) = 10^1 + 1 = 11 = 9*(1) + 2 = 9*(empty product) + 2.
a(1) = 10^2 + 1 = 101 = 9*(11) + 2.
a(2) = 10^4 + 1 = 10001 = 9*(11*101) + 2.
a(3) = 10^8 + 1 = 100000001 = 9*(11*101*10001) + 2.
a(4) = 10^16 + 1 = 10000000000000001 = 9*(11*101*10001*100000001) + 2.
a(5) = 10^32 + 1 = 100000000000000000000000000000001 = 9*(11*101*10001*100000001*10000000000000001) + 2.
MATHEMATICA
Table[10^2^n + 1, {n, 0, 6}] (* Arkadiusz Wesolowski, Nov 02 2012 *)
PROG
(Magma) [10^(2^n) + 1: n in [0..8]]; // Vincenzo Librandi, Jun 20 2011
CROSSREFS
Cf. A000215 (Fermat numbers: 2^(2^n) + 1, n >= 0).
KEYWORD
easy,nonn
AUTHOR
Jens Voß, Feb 04 2003
EXTENSIONS
Edited by Daniel Forgues, Jun 19 2011
STATUS
approved
Generalized Fermat numbers: 6^(2^n) + 1, n >= 0.
+10
13
7, 37, 1297, 1679617, 2821109907457, 7958661109946400884391937, 63340286662973277706162286946811886609896461828097
OFFSET
0,1
COMMENTS
The next term is too large to include.
As for standard Fermat numbers 2^(2^n) + 1, a number (2b)^m + 1 (with b > 1) can only be prime if m is a power of 2. On the other hand, out of the first 13 base-6 Fermat numbers, only the first three are primes.
Either the sequence of (standard) Fermat numbers contains infinitely many composite numbers or the sequence of base-6 Fermat numbers contains infinitely many composite numbers (cf. https://mathoverflow.net/a/404235/1593). - José Hernández, Nov 09 2021
Since all powers of 6 are congruent to 6 (mod 10), all terms of this sequence are congruent to 7 (mod 10). - Daniel Forgues, Jun 22 2011
There are only 5 known Fermat primes of the form 2^(2^n) + 1: {3, 5, 17, 257, 65537}. There are only 2 known base-10 generalized Fermat primes of the form 10^(2^n) + 1: {11, 101}. - Alexander Adamchuk, Mar 17 2007
LINKS
Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.
C. K. Caldwell, "Top Twenty" page, Generalized Fermat Divisors (base=6).
Wilfrid Keller, GFN06 factoring status.
Eric Weisstein's World of Mathematics, Generalized Fermat Number.
FORMULA
a(0) = 7, a(n) = (a(n-1)-1)^2 + 1, n >= 1.
a(n) = 5*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 5*(empty product, i.e., 1)+ 2 = 7 = a(0). This implies that the terms are pairwise coprime. - Daniel Forgues, Jun 20 2011
Sum_{n>=0} 2^n/a(n) = 1/5. - Amiram Eldar, Oct 03 2022
EXAMPLE
a(0) = 6^1+1 = 7 = 5*(1)+2 = 5*(empty product)+2;
a(1) = 6^2+1 = 37 = 5*(7)+2;
a(2) = 6^4+1 = 1297 = 5*(7*37)+2;
a(3) = 6^8+1 = 1679617 = 5*(7*37*1297)+2;
a(4) = 6^16+1 = 2821109907457 = 5*(7*37*1297*1679617)+2;
a(5) = 6^32+1 = 7958661109946400884391937 = 5*(7*37*1297*1679617*2821109907457)+2;
MATHEMATICA
Table[6^2^n + 1, {n, 0, 6}] (* Arkadiusz Wesolowski, Nov 02 2012 *)
PROG
(Magma) [6^(2^n) + 1: n in [0..8]]; // Vincenzo Librandi, Jun 20 2011
(PARI) a(n)=6^(2^n)+1 \\ Charles R Greathouse IV, Jun 21 2011
CROSSREFS
Cf. A000215 (Fermat numbers: 2^(2^n) + 1, n >= 0).
Cf. A019434 (Fermat primes of the form 2^(2^n) + 1).
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Nov 21 2002
EXTENSIONS
Edited by Daniel Forgues, Jun 22 2011
STATUS
approved
Generalized Fermat numbers: 7^(2^n)+1, n >= 0.
+10
13
8, 50, 2402, 5764802, 33232930569602, 1104427674243920646305299202, 1219760487635835700138573862562971820755615294131238402
OFFSET
0,1
COMMENTS
From Daniel Forgues, Jun 19 2011: (Start)
Generalized Fermat numbers F_n(a) := F_n(a,1) = a^(2^n)+1, a >= 2, n >= 0, can't be prime if a is odd (as is the case for the current sequence) (Ribenboim (1996)).
All factors of generalized Fermat numbers F_n(a,b) := a^(2^n)+b^(2^n), a >= 2, n >= 0, are of the form k*2^m+1, k >= 1, m >=0 (Riesel (1994, 1998)). (This only expresses that the factors are odd, which means that it only applies to odd generalized Fermat numbers.) (End)
LINKS
Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.
Eric Weisstein's World of Mathematics, Generalized Fermat Number.
FORMULA
a(0) = 8, a(n)=(a(n-1)-1)^2+1, n >= 1.
a(n) = 6*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 6*(empty product, i.e., 1)+ 2 = 8 = a(0). This means that the GCD of any pair of terms is 2. - Daniel Forgues, Jun 20 2011
Sum_{n>=0} 2^n/a(n) = 1/6. - Amiram Eldar, Oct 03 2022
EXAMPLE
a(0) = 7^1+1 = 8 = 6*(1)+2 = 6*(empty product)+2.
a(1) = 7^2+1 = 50 = 6*(8)+2.
a(2) = 7^4+1 = 2402 = 6*(8*50)+2.
a(3) = 7^8+1 = 5764802 = 6*(8*50*2402)+2.
a(4) = 7^16+1 = 33232930569602 = 6*(8*50*2402*5764802)+2.
a(5) = 7^32+1 = 1104427674243920646305299202 = 6*(8*50*2402*5764802*33232930569602)+2.
MATHEMATICA
Table[7^2^n + 1, {n, 0, 6}] (* Arkadiusz Wesolowski, Nov 02 2012 *)
PROG
(Magma) [7^(2^n) + 1: n in [0..8]]; // Vincenzo Librandi, Jun 20 2011
CROSSREFS
Cf. A000215 (Fermat numbers: 2^(2^n)+1, n >= 0).
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Nov 21 2002
EXTENSIONS
Edited by Daniel Forgues, Jun 19 2011
STATUS
approved
Generalized Fermat numbers: 12^(2^n) + 1, n >= 0.
+10
13
13, 145, 20737, 429981697, 184884258895036417, 34182189187166852111368841966125057, 1168422057627266461843148138873451659428421700563161428957815831003137
OFFSET
0,1
COMMENTS
There appears to be no divisibility rule for this sequence.
13 is the only prime up to 12^(2^15)+1.
LINKS
Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.
C. K. Caldwell, "Top Twenty" page, Generalized Fermat Divisors (base=12).
Wilfrid Keller, GFN12 factoring status.
Eric Weisstein's World of Mathematics, Generalized Fermat Number.
FORMULA
a(0) = 13; a(n)=(a(n-1)-1)^2 + 1, n >= 1.
a(n) = 11*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 11*(empty product, i.e., 1)+ 2 = 13 = a(0). This implies that the terms, all odd, are pairwise coprime. - Daniel Forgues, Jun 20 2011
Sum_{n>=0} 2^n/a(n) = 1/11. - Amiram Eldar, Oct 03 2022
EXAMPLE
a(0) = 12^1+1 = 13 = 11(1)+2 = 11(empty product)+2.
a(1) = 12^2+1 = 145 = 11(13)+2.
a(2) = 12^4+1 = 20737 = 11(13*145)+2.
a(3) = 12^8+1 = 429981697 = 11(13*145*20737)+2.
a(4) = 12^16+1 = 184884258895036417 = 11(13*145*20737*429981697)+2.
a(5) = 12^32+1 = 34182189187166852111368841966125057 = 11(13*145*20737*429981697*184884258895036417)+2.
MATHEMATICA
Table[12^2^n + 1, {n, 0, 6}] (* Arkadiusz Wesolowski, Nov 02 2012 *)
PROG
(PARI) g(a, n) = if(a%2, b=2, b=1); for(x=0, n, y=a^(2^x)+b; print1(y", "))
(Magma) [12^(2^n) + 1: n in [0..8]]; // Vincenzo Librandi, Jun 20 2011
(Python)
def A152585(n): return (1<<2*(m:=1<<n))*3**m+1 # Chai Wah Wu, Jul 19 2022
CROSSREFS
Cf. A000215 (Fermat numbers: 2^(2^n)+1, n >= 0).
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Dec 08 2008
EXTENSIONS
Edited by Daniel Forgues, Jun 19 2011
STATUS
approved
Generalized Fermat numbers: 5^(2^n) + 1, n >= 0.
+10
12
6, 26, 626, 390626, 152587890626, 23283064365386962890626, 542101086242752217003726400434970855712890626
OFFSET
0,1
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 0..11
Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.
C. K. Caldwell, "Top Twenty" page, Generalized Fermat Divisors (base=5).
Wilfrid Keller, GFN05 factoring status.
Eric Weisstein's World of Mathematics, Generalized Fermat Number.
FORMULA
a(0) = 6; a(n) = (a(n-1)-1)^2 + 1, n >= 1.
a(0) = 6, a(1) = 26; a(n) = a(n-1) + 4*5^(2^(n-1))*Product_{i=0..n-2} a(i), n >= 2.
a(0) = 6, a(1) = 26; a(n) = a(n-1)^2 - 2*(a(n-2)-1)^2, n >= 2.
a(0) = 6; a(n) = 4*(Product_{i=0..n-1} a(i)) + 2, n >= 1.
a(n) = A152578(n) - 1.
Sum_{n>=0} 2^n/a(n) = 1/4. - Amiram Eldar, Oct 03 2022
EXAMPLE
a(0) = 5^(2^0) + 1 = 5^1 + 1 = 6 = 4*(2^0) + 2;
a(1) = 5^(2^1) + 1 = 5^2 + 1 = 26 = 4*(2^1*3) + 2;
a(2) = 5^(2^2) + 1 = 5^4 + 1 = 626 = 4*(2^2*3*13) + 2;
a(3) = 5^(2^3) + 1 = 5^8 + 1 = 390626 = 4*(2^3*3*13*313) + 2;
a(4) = 5^(2^4) + 1 = 5^16 + 1 = 152587890626 = 4*(2^4*3*13*313*195313) + 2;
a(5) = 5^(2^5) + 1 = 5^32 + 1 = 23283064365386962890626 = 4*(2^5*3*13*313*195313*76293945313) + 2;
MATHEMATICA
Table[5^2^n + 1, {n, 0, 6}]
PROG
(Magma) [5^2^n+1 : n in [0..6]]
(PARI) for(n=0, 6, print1(5^2^n+1, ", "))
KEYWORD
easy,nonn
AUTHOR
STATUS
approved
Generalized Fermat numbers: a(n) = 8^(2^n) + 1, n >= 0.
+10
9
9, 65, 4097, 16777217, 281474976710657, 79228162514264337593543950337, 6277101735386680763835789423207666416102355444464034512897
OFFSET
0,1
COMMENTS
These numbers are all composite. We rewrite 8^(2^n) + 1 = (2^(2^n))^3 + 1.
Then by the identity a^n + b^n = (a+b)*(a^(n-1) - a^(n-2)*b + ... + b^(n-1)) for odd n, 2^(2^n) + 1 divides 8^(2^n) + 1. All factors of generalized Fermat numbers F_n(a,b) := a^(2^n)+b^(2^n), a >= 2, n >= 0, are of the form k*2^m+1, k >= 1, m >=0 (Riesel (1994)). - Daniel Forgues, Jun 19 2011
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..10
Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.
Eric Weisstein's World of Mathematics, Generalized Fermat Number.
FORMULA
a(0)=9, a(n) = (a(n-1) - 1)^2 + 1, n >= 1.
Sum_{n>=0} 2^n/a(n) = 1/7. - Amiram Eldar, Oct 03 2022
EXAMPLE
For n = 3, 8^(2^3) + 1 = 16777217. Similarly, (2^8)^3 + 1 = 16777217. Then 2^8 + 1 = 257 and 16777217/257 = 65281.
MATHEMATICA
Table[8^2^n + 1, {n, 0, 6}] (* Arkadiusz Wesolowski, Nov 02 2012 *)
PROG
(PARI) g(a, n) = if(a%2, b=2, b=1); for(x=0, n, y=a^(2^x)+b; print1(y", "))
(Magma) [8^(2^n) + 1: n in [0..8]]; // Vincenzo Librandi, Jun 20 2011
(PARI) a(n)=1<<(3*2^n)+1 \\ Charles R Greathouse IV, Jul 29 2011
CROSSREFS
Cf. A000215 (Fermat numbers: 2^(2^n) + 1, n >= 0).
KEYWORD
nonn,easy
AUTHOR
Cino Hilliard, Dec 08 2008
EXTENSIONS
Edited by Daniel Forgues, Jun 19 2011
STATUS
approved
Odd prime factors of generalized Fermat numbers of the form 11^(2^m) + 1 with m >= 0.
+10
8
3, 17, 61, 193, 257, 7321, 15361, 51329, 65537, 163841, 6304673, 15190529, 70254593, 1691123713, 1760464897, 3221225473, 3489660929, 4696846849, 6874464257, 53401878529, 111489577217, 149300051969, 184683593729, 206158430209, 447600088289, 1819992391681
OFFSET
1,1
COMMENTS
Odd primes p other than 5 such that the multiplicative order of 11 (mod p) is a power of 2.
REFERENCES
Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..31
Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), no. 221, pp. 441-446.
Anders Björn and Hans Riesel, Table errata to “Factors of generalized Fermat numbers”, Math. Comp. 74 (2005), no. 252, p. 2099.
Anders Björn and Hans Riesel, Table errata 2 to "Factors of generalized Fermat numbers", Math. Comp. 80 (2011), pp. 1865-1866.
Harvey Dubner and Wilfrid Keller, Factors of Generalized Fermat Numbers, Math. Comp. 64 (1995), no. 209, pp. 397-405.
MATHEMATICA
Delete[Select[Prime@Range[2, 10^5], IntegerQ@Log[2, MultiplicativeOrder[11, #]] &], 2]
CROSSREFS
Cf. A023394, A072982, A199592, A273945 (base 3), A273946 (base 5), A273947 (base 6), A273948 (base 7), A273950 (base 12).
KEYWORD
nonn
AUTHOR
STATUS
approved
Number of odd prime factors (with multiplicity) of generalized Fermat number 11^(2^n) + 1.
+10
2
1, 1, 1, 2, 2, 3, 2, 5, 6
OFFSET
0,4
FORMULA
a(n) = A001222(A199592(n)) - 1 for n > 0. - Felix Fröhlich, Jul 25 2016
EXAMPLE
b(n) = (11^(2^n) + 1)/2.
Complete Factorizations
b(0) = 2*3
b(1) = 61
b(2) = 7321
b(3) = 17*6304673
b(4) = 51329*447600088289
b(5) = 193*257*21283620033217629539178799361
b(6) = 316955440822738177*P49
b(7) = 15361*111489577217*574341646346402207998363393*
4018529583345312964042058778793458689*P55
b(8) = 15190529*4696846849*19618834249745000485889*
4393553986026616439660661873903822389581313*
290103547098489711747952055517085778590240759297*P138
PROG
(PARI) a001222(n) = bigomega(n)
a199592(n) = 11^(2^n)+1
a(n) = if(n==0, 1, a001222(a199592(n))-1) \\ Felix Fröhlich, Jul 25 2016
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
EXTENSIONS
a(8) was found in 2006 by Bruce Dodson
STATUS
approved
Numbers k such that 3*2^k + 1 is a prime factor of a generalized Fermat number 11^(2^m) + 1 for some m.
+10
1
6, 30, 36, 66, 276, 353, 2816, 3189, 34350, 48150, 80190, 1832496, 2291610, 5082306, 10829346
OFFSET
1,1
LINKS
Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), no. 221, pp. 441-446.
Anders Björn and Hans Riesel, Table errata to "Factors of generalized Fermat numbers", Math. Comp. 74 (2005), no. 252, p. 2099.
Anders Björn and Hans Riesel, Table errata 2 to "Factors of generalized Fermat numbers", Math. Comp. 80 (2011), pp. 1865-1866.
MATHEMATICA
lst = {}; Do[p = 3*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[11, p]], AppendTo[lst, n]], {n, 3189}]; lst
PROG
(Magma) SetDefaultRealField(RealField(350)); IsInteger := func<k | k eq Floor(k)>; [n: n in [2..353] | IsPrime(k) and IsInteger(Log(2, Modorder(11, k))) where k is 3*2^n+1];
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
STATUS
approved

Search completed in 0.009 seconds