[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a198608 -id:a198608
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of x > 0 satisfying x^2 = 2*sin(x).
+10
107
1, 4, 0, 4, 4, 1, 4, 8, 2, 4, 0, 9, 2, 4, 3, 4, 3, 6, 4, 1, 4, 8, 3, 2, 7, 9, 4, 3, 7, 4, 5, 7, 5, 8, 6, 0, 3, 7, 2, 5, 7, 1, 6, 1, 3, 7, 0, 4, 9, 1, 1, 4, 8, 1, 0, 9, 4, 4, 8, 2, 4, 3, 5, 4, 8, 7, 7, 5, 2, 5, 2, 9, 5, 6, 1, 7, 1, 4, 4, 3, 6, 2, 1, 2, 0, 5, 1, 0, 1, 5, 2, 4, 8, 2, 0, 8, 1, 7, 5
OFFSET
1,2
COMMENTS
For many choices of a,b,c, there is a unique nonzero number x satisfying a*x^2+b*x=c*sin(x).
Specifically, for a>0 and many choices of b and c, the curves y=ax^2+bx and y=c*sin(x) meet in a single point if and only if b=c, in which case the curves have a common tangent line, y=c*x. If b<c, the curves meet in quadrant 1; if b>c, they meet in quadrant 2.
Guide to related sequences (with graphs included in Mathematica programs):
a.....b.....c.....x
1.....0.....1.....A124597
1.....0.....2.....A198414
1.....0.....3.....A198415
1.....0.....4.....A198416
1.....1.....2.....A198417
1.....1.....3.....A198418
1.....1.....4.....A198419
1.....2.....1.....A198424
1.....2.....3.....A198425
1.....2.....4.....A198426
1....-1.....1.....A198420
1....-1.....1.....A198420
1....-1.....2.....A198421
1....-1.....3.....A198422
1....-2.....1.....A198427
1....-2.....2.....A198428
1....-2.....3.....A198429
1....-2.....4.....A198430
1....-3.....1.....A198431
1....-3.....2.....A198432
1....-3.....3.....A198433
1....-3.....4.....A198488
1....-4.....1.....A198489
1....-4.....2.....A198490
1....-4.....3.....A198491
1....-4.....4.....A198492
2.....0.....1.....A198583
2.....0.....3.....A198605
2.....1.....2.....A198493
2.....1.....3.....A198494
2.....1.....4.....A198495
2.....2.....1.....A198496
2.....2.....3.....A198497
2.....3.....1.....A198608
2.....3.....2.....A198609
2.....3.....4.....A198610
2.....4.....1.....A198611
2.....4.....3.....A198612
2....-1.....1.....A198546
2....-1.....2.....A198547
2....-1.....3.....A198548
2....-1.....4.....A198549
2....-2.....3.....A198559
2....-3.....1.....A198566
2....-3.....2.....A198567
2....-3.....3.....A198568
2....-3.....4.....A198569
2....-4.....1.....A198577
2....-4.....3.....A198578
3.....0.....1.....A198501
3.....0.....2.....A198502
3.....1.....2.....A198498
3.....1.....3.....A198499
3.....1.....4.....A198500
3.....2.....1.....A198613
3.....2.....3.....A198614
3.....2.....4.....A198615
3.....3.....1.....A198616
3.....3.....2.....A198617
3.....3.....4.....A198618
3.....4.....1.....A198606
3.....4.....2.....A198607
3.....4.....3.....A198619
3....-1.....1.....A198550
3....-1.....2.....A198551
3....-1.....3.....A198552
3....-1.....4.....A198553
3....-2.....1.....A198560
3....-2.....2.....A198561
3....-2.....3.....A198562
3....-2.....4.....A198563
3....-3.....1.....A198570
3....-3.....2.....A198571
3....-3.....4.....A198572
3....-4.....1.....A198579
3....-4.....2.....A198580
3....-4.....3.....A198581
3....-4.....4.....A198582
4.....0.....1.....A198503
4.....0.....3.....A198504
4.....1.....2.....A198505
4.....1.....3.....A198506
4.....1.....4.....A198507
4.....2.....1.....A198539
4.....2.....3.....A198540
4.....3.....1.....A198541
4.....3.....2.....A198542
4.....3.....4.....A198543
4.....4.....1.....A198544
4.....4.....3.....A198545
4....-1.....1.....A198554
4....-1.....2.....A198555
4....-1.....3.....A198556
4....-1.....4.....A198557
4....-1.....1.....A198554
4....-2.....1.....A198564
4....-2.....3.....A198565
4....-3.....1.....A198573
4....-3.....2.....A198574
4....-3.....3.....A198575
4....-3.....4.....A198576
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A198414, take f(x,u,v)=x^2+u*x-v*sin(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.
EXAMPLE
1.4044148240924343641483279437457586037...
MATHEMATICA
(* Program 1: A198414 *)
a = 1; b = 0; c = 2;
f[x_] := a*x^2 + b*x; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -1, 2}]
r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.41}, WorkingPrecision -> 110]
RealDigits[r] (* A198414 *)
(* Program 2: an implicit surface of x^2+u*x=v*sin(x) *)
f[{x_, u_, v_}] := x^2 + u*x - v*Sin[x];
t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .01, 6}]}, {u, .1, 100}, {v, u, 100}];
ListPlot3D[Flatten[t, 1]]
CROSSREFS
Cf. A197737.
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 24 2011
EXTENSIONS
Edited by Georg Fischer, Aug 01 2021
STATUS
approved

Search completed in 0.006 seconds