[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a197142 -id:a197142
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of the x-intercept of the shortest segment from the positive x axis through (2,1) to the line y=x.
+10
26
2, 3, 5, 3, 2, 0, 9, 9, 6, 4, 1, 9, 9, 3, 2, 4, 4, 2, 9, 4, 8, 3, 1, 0, 1, 3, 3, 2, 5, 7, 7, 3, 8, 8, 4, 5, 7, 2, 7, 0, 7, 0, 5, 6, 1, 3, 8, 5, 6, 8, 4, 6, 8, 2, 6, 8, 0, 6, 6, 9, 3, 0, 4, 2, 6, 5, 1, 5, 1, 8, 9, 7, 2, 3, 2, 2, 0, 9, 2, 0, 8, 5, 9, 1, 6, 5, 8, 0, 3
OFFSET
1,1
COMMENTS
The shortest segment from one side of an angle T through a point P inside T is called the Philo line of P in T. For discussions and guides to related sequences, see A197008 and A195284.
Philo lines from positive x axis through (h,k) to line y=mx:
m......h......k....x-intercept.....distance
1......2......1.......A197032......A197033
1......3......1.......A197034......A197035
1......4......1.......A197136......A197137
1......3......2.......A197138......A197139
2......1......1.......A197140......A197141
2......2......1.......A197142......A197143
2......3......1.......A197144......A197145
2......4......1.......A197146......A197147
3......1......1.......A197148......A197149
3......2......1.......A197150......A197151
1/2....3......1.......A197152......A197153
1/2....4......1.......A197154......A197155
LINKS
R. J. Mathar, OEIS A197032, Nov. 8, 2022
M. F. Hasler, Philo line - oeis.org/A197032 (google drawing), Nov. 8, 2022
Wikipedia, Philo line
FORMULA
x = 2 + tan phi where 1 + 2 tan phi = 1/(sin phi + cos phi), whence x = 1 + A357469 = the only real root of x^3 - 4*x^2 + 6*x - 5. - M. F. Hasler, Nov 08 2022
EXAMPLE
length of Philo line: 1.8442716817001... (see A197033)
endpoint on x axis: (2.35321..., 0)
endpoint on y=x: (1.73898, 1.73898)
MAPLE
Digits := 140 ;
x^3-4*x^2+6*x-5 ;
fsolve(%=0) ; # R. J. Mathar, Nov 08 2022
MATHEMATICA
f[t_] := (t - k*t/(k + m*t - m*h))^2 + (m*k*t/(k + m*t - m*h))^2;
g[t_] := D[f[t], t]; Factor[g[t]]
p[t_] := h^2 k + k^3 - h^3 m - h k^2 m - 3 h k t + 3 h^2 m t + 2 k t^2 - 3 h m t^2 + m t^3 (* root of p[t] minimizes f *)
m = 1; h = 2; k = 1; (* m=slope; (h, k)=point *)
t = t1 /. FindRoot[p[t1] == 0, {t1, 1, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A197032 *)
{N[t], 0} (* lower endpoint of minimal segment [Philo line] *)
{N[k*t/(k + m*t - m*h)],
N[m*k*t/(k + m*t - m*h)]} (* upper endpoint *)
d = N[Sqrt[f[t]], 100]
RealDigits[d] (* A197033 *)
Show[Plot[{k*(x - t)/(h - t), m*x}, {x, 0, 2.5}],
ContourPlot[(x - h)^2 + (y - k)^2 == .003, {x, 0, 3}, {y, 0, 3}], PlotRange -> {0, 2}, AspectRatio -> Automatic]
PROG
(PARI) solve(x=2, 3, x^3 - 4*x^2 + 6*x - 5)
CROSSREFS
Cf. A357469 (= this constant - 1).
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 10 2011
EXTENSIONS
Invalid trailing digits corrected by R. J. Mathar, Nov 08 2022
STATUS
approved
Decimal expansion of the shortest distance from the x axis through (2,1) to the line y=2x.
+10
3
2, 7, 4, 6, 3, 9, 4, 1, 0, 7, 6, 1, 0, 0, 7, 1, 1, 6, 5, 6, 7, 9, 9, 5, 4, 9, 7, 2, 2, 5, 2, 5, 7, 3, 3, 7, 4, 3, 9, 0, 5, 1, 4, 5, 6, 9, 1, 4, 5, 8, 6, 7, 1, 7, 4, 6, 4, 6, 3, 3, 5, 2, 3, 4, 4, 2, 2, 7, 3, 4, 8, 3, 1, 6, 8, 3, 0, 0, 4, 7, 0, 6, 1, 1, 5, 0, 0, 9, 6, 4, 4, 3, 2, 2, 4, 7, 9, 5, 1
OFFSET
1,1
COMMENTS
The shortest segment from one side of an angle T through a point P inside T is called the Philo line of P in T. For discussions and guides to related sequences, see A197032, A197008 and A195284.
EXAMPLE
length of Philo line: 2.7463941076100...
endpoint on x axis: (2.69141, 0); see A197142
endpoint on line y=2x: (1.1295, 2.25901)
MATHEMATICA
f[t_] := (t - k*t/(k + m*t - m*h))^2 + (m*k*t/(k + m*t - m*h))^2;
g[t_] := D[f[t], t]; Factor[g[t]]
p[t_] := h^2 k + k^3 - h^3 m - h k^2 m - 3 h k t + 3 h^2 m t + 2 k t^2 - 3 h m t^2 + m t^3
m = 2; h = 2; k = 1; (* slope m, point (h, k) *)
t = t1 /. FindRoot[p[t1] == 0, {t1, 1, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A197142 *)
{N[t], 0} (* endpoint on x axis *)
{N[k*t/(k + m*t - m*h)],
N[m*k*t/(k + m*t - m*h)]} (* endpt on line y=2x *)
d = N[Sqrt[f[t]], 100]
RealDigits[d] (* A197143 *)
Show[Plot[{k*(x - t)/(h - t), m*x}, {x, 0, 4}],
ContourPlot[(x - h)^2 + (y - k)^2 == .002, {x, 0, 4}, {y, 0, 3}], PlotRange -> {0, 2.5}, AspectRatio -> Automatic]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 11 2011
STATUS
approved

Search completed in 0.007 seconds