[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a194366 -id:a194366
     Sort: relevance | references | number | modified | created      Format: long | short | data
Nonsquare positive integers k such that the fundamental unit of the quadratic field Q(sqrt(k)) has norm -1 and can be written as x + y*sqrt(d) with integers x, y where d is the squarefree part of k.
+10
8
2, 8, 10, 17, 18, 26, 32, 37, 40, 41, 50, 58, 65, 68, 72, 73, 74, 82, 89, 90, 97, 98, 101, 104, 106, 113, 122, 128, 130, 137, 145, 148, 153, 160, 162, 164, 170, 185, 193, 197, 200, 202, 218, 226, 232, 233, 234, 241, 242, 250, 257, 260, 265, 269, 272, 274
OFFSET
1,1
COMMENTS
This sequence is a subsequence of A172000.
MATHEMATICA
cr = {}; Do[If[IntegerQ[Sqrt[n]], , kk = NumberFieldFundamentalUnits[Sqrt[n]]; d1 = kk[[1]][[2]][[1]]; d2 = kk[[1]][[1]] kk[[1]][[2]][[2]]; d3 = Expand[(d1 + d2) (d1 - d2)]; If[d3 == -1, k1 = Max[Denominator[d1], Denominator[d2]]; If[k1 == 1, AppendTo[cr, n]]]], {n, 2, 400}]; cr
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 10 2011
EXTENSIONS
Definition clarified by Emmanuel Vantieghem, Mar 06 2017
STATUS
approved
Nonsquare positive integers n such that the fundamental unit of quadratic field Q(sqrt(d))is singular.
+10
5
6, 14, 22, 30, 34, 38, 42, 46, 54, 56, 62, 66, 69, 70, 78, 86, 87, 93, 94, 102, 110, 114, 115, 118, 126, 130, 132, 134, 138, 142, 146, 150, 154, 155, 156, 158, 159, 166, 174, 177, 178, 182, 183, 184, 185, 186, 190, 194, 198, 206, 210, 214, 220, 222, 228, 230
OFFSET
1,1
COMMENTS
x^2+n*y^2=(+/-)2^s where s is 0 or 1.
Definition: Unity is singular when GCD[n,y]<>1.
EXAMPLE
a(1)=6 because unity of quadratic field Q(6) is 5+2*Sqrt[6] and GCD[2,6]=2 <>1.
MATHEMATICA
cr = {}; Do[If[IntegerQ[Sqrt[n]], , kk = NumberFieldFundamentalUnits[Sqrt[n]]; d1 = kk[[1]][[2]][[1]]; d2 = kk[[1]][[1]] kk[[1]][[2]][[2]]; d4 = Numerator[d2/Sqrt[n]]; If[GCD[d4, n] == 1, , AppendTo[cr, n]]], {n, 2, 330}]; cr (*Artur Jasinski*)
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 10 2011
STATUS
approved
Nonsquare positive integers n such that the fundamental unit of quadratic field Q(sqrt(n))is not singular.
+10
5
2, 3, 5, 7, 8, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 37, 39, 40, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 63, 65, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 88, 89, 90, 91, 92
OFFSET
1,1
COMMENTS
x^2+n*y^2=(+/-)2^s where s is 0 or 1.
Definition: Unity is singular when GCD[n,y]<>1.
MATHEMATICA
cr = {}; Do[If[IntegerQ[Sqrt[n]], , kk = NumberFieldFundamentalUnits[Sqrt[n]]; d1 = kk[[1]][[2]][[1]]; d2 = kk[[1]][[1]] kk[[1]][[2]][[2]]; d4 = Numerator[d2/Sqrt[n]]; If[GCD[d4, n] == 1, AppendTo[cr, n]]], {n, 2, 330}]; cr
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 10 2011
STATUS
approved
Smallest k such that the fundamental unit (x+y*w) or (x+y*w)/2 of the real quadratic field Q(sqrt(k)) obeys gcd(k,y)=n.
+10
3
6, 69, 248, 115, 78, 511, 1016, 603, 70, 385, 3432, 793, 238, 2655, 14224, 1241, 3186, 703, 3980, 9177, 154, 736, 456, 1825, 3172, 13959, 2884, 319, 1110, 4619, 7136, 10659, 7174, 10255, 44856, 7067, 2926, 16185, 54280, 779, 7602, 10879, 22088, 10215, 46
OFFSET
2,1
COMMENTS
Conjecture: For every n such a quadratic field with minimum k exists.
FORMULA
k = A197127(m) where m is the smallest m such that A197169(m)=n.
EXAMPLE
For n=2 the unit is 2*w-5 with k=6.
For n=3 the unit is (3*w+25)/2 with k=69.
For n=4 the unit is (4*w-63) with k=248.
For n=5 the unit is 105*w-1126 with k=115.
For n=7 the unit is 185290497*w-4188548960 with k=511 (and this x and y appear in A041976 and A041977).
MATHEMATICA
cr = {}; ck = {}; Do[If[IntegerQ[Sqrt[n]], , kk = NumberFieldFundamentalUnits[Sqrt[n]]; d1 = kk[[1]][[2]][[1]]; d2 = kk[[1]][[1]] kk[[1]][[2]][[2]]; d4 = Numerator[d2/Sqrt[n]]; If[GCD[d4, n] == 1, , AppendTo[ck, GCD[d4, n]]; AppendTo[cr, n]]], {n, 2, 200000}]; aa = {}; Do[AppendTo[aa, cr[[First[Position[ck, n]][[1]]]]], {n, 2, 99}]; aa
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 11 2011
STATUS
approved
Values of gcd(n,y) for successive y = A197128(n).
+10
1
2, 2, 2, 2, 2, 2, 2, 46, 2, 2, 2, 2, 3, 10, 6, 2, 3, 3, 2, 2, 2, 6, 5, 2, 2, 5, 2, 2, 2, 2, 2, 2, 22, 5, 2, 2, 3, 2, 2, 3, 2, 2, 3, 46, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 14, 2, 4, 3, 2, 2, 2, 4, 14, 3, 2, 3, 2, 5, 2, 2, 2, 5, 2, 2, 2, 3, 6, 29, 3, 2, 2, 3
OFFSET
1,1
MATHEMATICA
cr = {}; Do[If[IntegerQ[Sqrt[n]], , kk = NumberFieldFundamentalUnits[Sqrt[n]]; d1 = kk[[1]][[2]][[1]]; d2 = kk[[1]][[1]] kk[[1]][[2]][[2]]; d4 = Numerator[d2/Sqrt[n]]; If[GCD[d4, n] == 1, , AppendTo[cr, GCD[d4, n]]]], {n, 2, 20000}]; cr
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 11 2011
STATUS
approved
Values k such that singular quadratic unity of Q(k) have gcd(k,y) = 2.
+10
1
6, 14, 22, 30, 34, 38, 42, 54, 56, 62, 66, 86, 94, 102, 110, 118, 126, 132, 134, 138, 142, 146, 150, 156, 158, 166, 174, 178, 182, 186, 190, 194, 198, 206, 210, 214, 220, 222, 228, 230, 246, 254, 258, 262, 270, 278, 282, 286, 294, 302, 306, 310, 322, 326
OFFSET
2,1
COMMENTS
Conjecture: This sequence is infinite.
MATHEMATICA
cr = {}; ck = {}; Do[If[IntegerQ[Sqrt[n]], , kk = NumberFieldFundamentalUnits[Sqrt[n]]; d1 = kk[[1]][[2]][[1]]; d2 = kk[[1]][[1]] kk[[1]][[2]][[2]]; d4 = Numerator[d2/Sqrt[n]]; If[GCD[d4, n] == 1, , AppendTo[ck, GCD[d4, n]]; AppendTo[cr, n]]], {n, 2, 200000}]; aa = {}; Do[If[ck[[n]] == 2, AppendTo[aa, cr[[n]]]], {n, 1, Length[cr]}]; aa
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 11 2011
STATUS
approved
Nonsquare positive integers n such that the fundamental unit of quadratic field Q(sqrt(d))has norm -1 and minimum one from two parts of fundamental unit are not integer.
+10
0
5, 13, 20, 29, 45, 52, 53, 61, 80, 85, 109, 116, 117, 125, 149, 157, 173, 180, 181, 208, 212, 229, 244, 245, 261, 277, 293, 317, 320, 325, 340, 365, 397, 405, 421, 436, 445, 461, 464, 468, 477, 493, 500, 509, 533, 541, 549, 565, 596, 605, 613, 628, 629, 637
OFFSET
1,1
COMMENTS
Numbers which occured in A172000 and not in A197115.
MATHEMATICA
cr = {}; Do[ If[IntegerQ[Sqrt[n]], , kk = NumberFieldFundamentalUnits[Sqrt[n]]; d1 = kk[[1]][[2]][[1]]; d2 = kk[[1]][[1]] kk[[1]][[2]][[2]]; d3 = Expand[(d1 + d2) (d1 - d2)]; If[d3 == -1, k1 = Max[Denominator[d1], Denominator[d2]]; If[k1 == 1, , AppendTo[cr, n]]]], {n, 2, 2000}]; cr
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 10 2011
STATUS
approved
Nonsquare positive integers n such that the fundamental unit of quadratic field Q(sqrt(d))has norm 1 and minimum one from two parts of fundamental unit are not integer.
+10
0
21, 69, 77, 84, 93, 133, 165, 189, 205, 213, 221, 237, 253, 276, 285, 301, 308, 309, 336, 341, 357, 372, 413, 429, 437, 453, 469, 501, 517, 525, 532, 581, 589, 597, 621, 645, 660, 669, 693, 717, 741, 749, 756, 789, 805, 820, 837, 852, 861, 869, 884, 893, 917
OFFSET
1,1
COMMENTS
Numbers which occured in A087643 and not in A194366.
MATHEMATICA
cr = {}; Do[If[IntegerQ[Sqrt[n]], , kk = NumberFieldFundamentalUnits[Sqrt[n]]; d1 = kk[[1]][[2]][[1]]; d2 = kk[[1]][[1]] kk[[1]][[2]][[2]]; d3 = Expand[(d1 + d2) (d1 - d2)]; If[d3 == 1, k1 = Max[Denominator[d1], Denominator[d2]]; If[k1 == 1, , AppendTo[cr, n]]]], {n, 2, 2000}]; cr
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 10 2011
STATUS
approved
Values k such that singular quadratic unity of Q(k) have gcd(k, y) = 3.
+10
0
69, 87, 93, 159, 177, 183, 249, 267, 276, 312, 321, 327, 348, 372, 387, 417, 471, 597, 633, 636, 699, 711, 717, 723, 741, 747, 831, 849, 879, 921, 927, 987, 993, 1005, 1068, 1104, 1137, 1179, 1248, 1251, 1272, 1293, 1299, 1317, 1320, 1353, 1359, 1383, 1392
OFFSET
2,1
MATHEMATICA
cr = {}; ck = {}; Do[If[IntegerQ[Sqrt[n]], , kk = NumberFieldFundamentalUnits[Sqrt[n]]; d1 = kk[[1]][[2]][[1]]; d2 = kk[[1]][[1]] kk[[1]][[2]][[2]]; d4 = Numerator[d2/Sqrt[n]]; If[GCD[d4, n] == 1, , AppendTo[ck, GCD[d4, n]]; AppendTo[cr, n]]], {n, 2, 200000}]; aa = {}; Do[If[ck[[n]] == 3, AppendTo[aa, cr[[n]]]], {n, 1, Length[cr]}]; aa
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 11 2011
STATUS
approved

Search completed in 0.007 seconds