[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a194192 -id:a194192
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of ways to place 7 points on an n X n square grid so that no more than 2 points are on a vertical or horizontal straight line.
+10
9
0, 0, 0, 816, 93000, 2602800, 35526120, 309328320, 1972234656, 9989784000, 42369069600, 155993500080, 511660972680, 1524225598896, 4185197289000, 10715254368000, 25817751281280, 58981960615680, 128554066935936, 268691201838000, 540886175310600, 1052558059827120
OFFSET
1,4
COMMENTS
Column 8 of triangle A279445.
Rotations and reflections of placements are counted. For numbers if they are to be ignored see A279451.
For condition "no more than 2 points on straight lines at any angle", see A194192.
LINKS
Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
FORMULA
a(n) = (n^14 -91*n^12 +420*n^11 +693*n^10 -10500*n^9 +33647*n^8 -45780*n^7 +5866*n^6 +65940*n^5 -89796*n^4 +50400*n^3 -10800*n^2)/5040.
a(n) = 15*a(n-1) -105*a(n-2) +455*a(n-3) -1365*a(n-4) +3003*a(n-5) -5005*a(n-6) +6435*a(n-7) -6435*a(n-8) +5005*a(n-9) -3003*a(n-10) +1365*a(n-11) -455*a(n-12) +105*a(n-13) -15*a(n-14) +a(n-15).
G.f.: 24*x^4*(34 +3365*x +53895*x^2 +244910*x^3 +355390*x^4 +115542*x^5 -42490*x^6 -11570*x^7 +1500*x^8 +145*x^9 -x^10) / (1 -x)^15. - Colin Barker, Dec 22 2016
MATHEMATICA
Table[(n^14 - 91 n^12 + 420 n^11 + 693 n^10 - 10500 n^9 + 33647 n^8 - 45780 n^7 + 5866 n^6 + 65940 n^5 - 89796 n^4 + 50400 n^3 - 10800 n^2)/5040, {n, 23}] (* or *)
Rest@ CoefficientList[Series[24 x^4*(34 + 3365 x + 53895 x^2 + 244910 x^3 + 355390 x^4 + 115542 x^5 - 42490 x^6 - 11570 x^7 + 1500 x^8 + 145 x^9 - x^10)/(1 - x)^15, {x, 0, 23}], x] (* Michael De Vlieger, Dec 22 2016 *)
PROG
(PARI) concat(vector(3), Vec(24*x^4*(34 +3365*x +53895*x^2 +244910*x^3 +355390*x^4 +115542*x^5 -42490*x^6 -11570*x^7 +1500*x^8 +145*x^9 -x^10) / (1 -x)^15 + O(x^30))) \\ Colin Barker, Dec 22 2016
(PARI) a(n) = (n^12 -91*n^10 +420*n^9 +693*n^8 -10500*n^7 +33647*n^6 -45780*n^5 +5866*n^4 +65940*n^3 -89796*n^2 +50400*n -10800)*n^2/5040 \\ Charles R Greathouse IV, Dec 22 2016
CROSSREFS
Same problem but 2..6,8,9 points: A083374, A279437, A279438, A279439, A279440, A279442, A279443.
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Dec 22 2016
STATUS
approved
Square array read by antidiagonals downwards: T(n,k) = number of ways to arrange k indistinguishable points on an n X n square grid so that no three points are collinear at any angle.
+10
7
1, 0, 4, 0, 6, 9, 0, 4, 36, 16, 0, 1, 76, 120, 25, 0, 0, 78, 516, 300, 36, 0, 0, 28, 1278, 2148, 630, 49, 0, 0, 2, 1668, 9498, 6768, 1176, 64, 0, 0, 0, 998, 25052, 47331, 17600, 2016, 81, 0, 0, 0, 204, 36698, 215448, 175952, 40120, 3240, 100, 0, 0, 0, 11, 26700, 620210
OFFSET
1,3
COMMENTS
Columns 4..7 are A175383, A194190, A194191, A194192 respectively. - Heinrich Ludwig, Nov 16 2016
LINKS
R. H. Hardin and Heinrich Ludwig, Table of n, a(n) for n = 1..199, (first 181 terms from R. H. Hardin)
EXAMPLE
Table starts:
...1.....0.......0........0..........0...........0............0............0
...4.....6.......4........1..........0...........0............0............0
...9....36......76.......78.........28...........2............0............0
..16...120.....516.....1278.......1668.........998..........204...........11
..25...300....2148.....9498......25052.......36698........26700.........8242
..36...630....6768....47331.....215448......620210......1073076......1035097
..49..1176...17600...175952....1189868.....5367308.....15657764.....28228158
..64..2016...40120...545764....5199888....34678364....159413700....491910848
..81..3240...82608..1461672...18520572...169259212...1108580092...5122725512
.100..4950..157252..3507553...56978440...682686652...6030207624..38914424892
.121..7260..280988..7701638..155627304..2356999994..26852315940.229093733030
.144.10296..477012.15773526..388897892..7294368210.104865006648
.169.14196..775172.30375194..894254904.20227526910
.196.19110.1214768.55695587.1932504496
.225.25200.1844512.97777392
.256.32640.2725000
...
Some solutions for n=4, k=4:
..0..0..1..0....0..0..0..0....0..0..0..0....0..0..1..0....1..0..0..0
..1..0..0..0....1..0..0..0....0..0..1..0....1..0..0..0....0..0..0..1
..0..0..0..0....0..1..0..1....1..0..1..0....1..0..0..0....0..0..0..1
..0..0..1..1....0..1..0..0....0..1..0..0....0..0..0..1....1..0..0..0
CROSSREFS
Column 1 is A000290.
Column 2 is A083374.
Column 3 is A045996.
Column 4 is A175383.
Column 5 is A194190.
Column 6 is A194191.
Column 7 is A194192.
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 18 2011
STATUS
approved
Number of non-equivalent (mod D_4) ways to arrange 7 points on an n X n square grid so that no three points are collinear.
+10
6
28, 3385, 134353, 1958674, 19929645, 138586349, 753795278, 3356614240, 13108210508, 44374441652, 137349454120
OFFSET
4,1
COMMENTS
Column 7 of A235453.
Without the restriction "non-equivalent (mod D_4)" the numbers are given by A194192, n >= 4.
EXAMPLE
There are a(4) = 28 non-equivalent ways to place 7 points (X) on a 4 X 4 grid. Example:
. X X .
. . . X
X . . X
X X . .
CROSSREFS
Cf. A235453, A194192, A235454 (3 points), A235455 (4 points), A235456 (5 points), A235457 (6 points).
KEYWORD
nonn,more
AUTHOR
Heinrich Ludwig, Jan 12 2014
EXTENSIONS
a(13), a(14) from Heinrich Ludwig, Nov 16 2016
STATUS
approved

Search completed in 0.006 seconds