[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a194151 -id:a194151
     Sort: relevance | references | number | modified | created      Format: long | short | data
Beatty sequence for 5+2*sqrt(5); complement of A194151.
+20
2
9, 18, 28, 37, 47, 56, 66, 75, 85, 94, 104, 113, 123, 132, 142, 151, 161, 170, 179, 189, 198, 208, 217, 227, 236, 246, 255, 265, 274, 284, 293, 303, 312, 322, 331, 340, 350, 359, 369, 378, 388, 397, 407, 416, 426, 435, 445, 454, 464, 473, 483, 492, 502
OFFSET
1,1
LINKS
FORMULA
a(n) = 5*n + A022839(2*n). - R. J. Mathar, Aug 25 2011
a(n) = floor(n*(5+2*sqrt(5))). - Vincenzo Librandi, Oct 25 2011
MATHEMATICA
r=Sqrt[5]/2;
c[k_]:=Floor[k*r];
Table[c[k], {k, 1, 90}] (* A194151 *)
s=5+2*Sqrt[5];
d[k_]:=Floor[k*s];
Table[d[k], {k, 1, 90}] (* A194152 *)
PROG
(Magma) [Floor(n*(5+2*Sqrt(5))): n in [1..80]]; // Vincenzo Librandi, Oct 25 2011
(Python)
from sympy import integer_nthroot
def A194152(n): return 5*n+integer_nthroot(20*n**2, 2)[0] # Chai Wah Wu, Mar 16 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 17 2011
STATUS
approved
Sum{floor(j*(sqrt(5))/2) : 1<=j<=n}; n-th partial sum of Beatty sequence for (sqrt(5))/2.
+10
0
1, 3, 6, 10, 15, 21, 28, 36, 46, 57, 69, 82, 96, 111, 127, 144, 163, 183, 204, 226, 249, 273, 298, 324, 351, 380, 410, 441, 473, 506, 540, 575, 611, 649, 688, 728, 769, 811, 854, 898, 943, 989, 1037, 1086, 1136, 1187, 1239, 1292, 1346, 1401, 1458, 1516
OFFSET
1,2
MATHEMATICA
c[n_] := Sum[Floor[j*Sqrt[5])/2], {j, 1, n}];
c = Table[c[n], {n, 1, 90}]
CROSSREFS
Cf. A194151 (Beatty sequence for (sqrt(5))/2).
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 17 2011
STATUS
approved

Search completed in 0.005 seconds