[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a181875 -id:a181875
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle of coefficients of Chebyshev's S(n,x) := U(n,x/2) polynomials (exponents in increasing order).
+10
490
1, 0, 1, -1, 0, 1, 0, -2, 0, 1, 1, 0, -3, 0, 1, 0, 3, 0, -4, 0, 1, -1, 0, 6, 0, -5, 0, 1, 0, -4, 0, 10, 0, -6, 0, 1, 1, 0, -10, 0, 15, 0, -7, 0, 1, 0, 5, 0, -20, 0, 21, 0, -8, 0, 1, -1, 0, 15, 0, -35, 0, 28, 0, -9, 0, 1, 0, -6, 0, 35, 0, -56, 0, 36, 0, -10, 0, 1, 1, 0, -21, 0, 70, 0, -84, 0
OFFSET
0,8
COMMENTS
G.f. for row polynomials S(n,x) (signed triangle): 1/(1-x*z+z^2). Unsigned triangle |a(n,m)| has Fibonacci polynomials F(n+1,x) as row polynomials with g.f. 1/(1-x*z-z^2). |a(n,m)| triangle has rows of Pascal's triangle A007318 in the even-numbered diagonals (odd-numbered ones have only 0's).
Row sums (unsigned triangle) A000045(n+1) (Fibonacci). Row sums (signed triangle) S(n,1) sequence = periodic(1,1,0,-1,-1,0) = A010892.
Alternating row sums A049347(n) = S(n,-1) = periodic(1,-1,0). - Wolfdieter Lang, Nov 04 2011
S(n,x) is the characteristic polynomial of the adjacency matrix of the n-path. - Michael Somos, Jun 24 2002
S(n,x) is also the matching polynomial of the n-path. - Eric W. Weisstein, Apr 10 2017
|T(n,k)| = number of compositions of n+1 into k+1 odd parts. Example: |T(7,3)| = 10 because we have (1,1,3,3), (1,3,1,3), (1,3,3,1), (3,1,1,3), (3,1,3,1), (3,3,1,1), (1,1,1,5), (1,1,5,1), (1,5,1,1) and (5,1,1,1). - Emeric Deutsch, Apr 09 2005
S(n,x)= R(n,x) + S(n-2,x), n >= 2, S(-1,x)=0, S(0,x)=1, R(n,x):=2*T(n,x/2) = Sum_{m=0..n} A127672(n,m)*x^m (monic integer Chebyshev T-Polynomials). This is the rewritten so-called trace of the transfer matrix formula for the T-polynomials. - Wolfdieter Lang, Dec 02 2010
In a regular N-gon inscribed in a unit circle, the side length is d(N,1) = 2*sin(Pi/N). The length ratio R(N,k):=d(N,k)/d(N,1) for the (k-1)-th diagonal, with k from {2,3,...,floor(N/2)}, N >= 4, equals S(k-1,x) = sin(k*Pi/N)/sin(Pi/N) with x=rho(N):=R(N,2) = 2*cos(Pi/N). Example: N=7 (heptagon), rho=R(7,2), sigma:=R(N,3) = S(2,rho) = rho^2 - 1. Motivated by the quoted paper by P. Steinbach. - Wolfdieter Lang, Dec 02 2010
From Wolfdieter Lang, Jul 12 2011: (Start)
In q- or basic analysis, q-numbers are [n]_q :=S(n-1,q+1/q) = (q^n-(1/q)^n})/(q-1/q), with the row polynomials S(n,x), n >= 0.
The zeros of the row polynomials S(n-1,x) are (from those of Chebyshev U-polynomials):
x(n-1;k) = +- t(k,rho(n)), k = 1..ceiling((n-1)/2), n >= 2, with t(n,x) the row polynomials of A127672 and rho(n):= 2*cos(Pi/n). The simple vanishing zero for even n appears here as +0 and -0.
Factorization of the row polynomials S(n-1,x), x >= 1, in terms of the minimal polynomials of cos(2 Pi/2), called Psi(n,x), with coefficients given by A181875/A181876:
S(n-1,x) = (2^(n-1))*Product_{n>=1}(Psi(d,x/2), 2 < d | 2n).
(From the rewritten eq. (3) of the Watkins and Zeitlin reference, given under A181872.) [See the W. Lang ArXiv link, Proposition 9, eq. (62). - Wolfdieter Lang, Apr 14 2018]
(End)
The discriminants of the S(n,x) polynomials are found in A127670. - Wolfdieter Lang, Aug 03 2011
This is an example for a subclass of Riordan convolution arrays (lower triangular matrices) called Bell arrays. See the L. W. Shapiro et al. reference under A007318. If a Riordan array is named (G(z),F(z)) with F(z)=z*Fhat(z), the o.g.f. for the row polynomials is G(z)/(1-x*z*Fhat(z)), and it becomes a Bell array if G(z)=Fhat(z). For the present Bell type triangle G(z)=1/(1+z^2) (see the o.g.f. comment above). This leads to the o.g.f. for the column no. k, k >= 0, x^k/(1+x^2)^(k+1) (see the formula section), the one for the row sums and for the alternating row sums (see comments above). The Riordan (Bell) A- and Z-sequences (defined in a W. Lang link under A006232, with references) have o.g.f.s 1-x*c(x^2) and -x*c(x^2), with the o.g.f. of the Catalan numbers A000108. Together they lead to a recurrence given in the formula section. - Wolfdieter Lang, Nov 04 2011
The determinant of the N x N matrix S(N,[x[1], ..., x[N]]) with elements S(m-1,x[n]), for n, m = 1, 2, ..., N, and for any x[n], is identical with the determinant of V(N,[x[1], ..., x[N]]) with elements x[n]^(m-1) (a Vandermondian, which equals Product_{1 <= i < j<= N} (x[j] - x[i])). This is a special instance of a theorem valid for any N >= 1 and any monic polynomial system p(m,x), m>=0, with p(0,x) = 1. For this theorem see the Vein-Dale reference, p. 59. Thanks to L. Edson Jeffery for an email asking for a proof of the non-singularity of the matrix S(N,[x[1], ...., x[N]]) if and only if the x[j], j = 1..N, are pairwise distinct. - Wolfdieter Lang, Aug 26 2013
These S polynomials also appear in the context of modular forms. The rescaled Hecke operator T*_n = n^((1-k)/2)*T_n acting on modular forms of weight k satisfies T*_(p^n) = S(n, T*_p), for each prime p and positive integer n. See the Koecher-Krieg reference, p. 223. - Wolfdieter Lang, Jan 22 2016
For a shifted o.g.f. (mod signs), its compositional inverse, and connections to Motzkin and Fibonacci polynomials, non-crossing partitions and other combinatorial structures, see A097610. - Tom Copeland, Jan 23 2016
From M. Sinan Kul, Jan 30 2016; edited by Wolfdieter Lang, Jan 31 2016 and Feb 01 2016: (Start)
Solutions of the Diophantine equation u^2 + v^2 - k*u*v = 1 for integer k given by (u(k,n), v(k,n)) = (S(n,k), S(n-1,k)) because of the Cassini-Simson identity: S(n,x)^2 - S(n+1,x)*S(n-1, x) = 1, after use of the S-recurrence. Note that S(-n, x) = -S(-n-2, x), n >= 1, and the periodicity of some S(n, k) sequences.
Hence another way to obtain the row polynomials would be to take powers of the matrix [x, -1; 1,0]: S(n, x) = (([x, -1; 1, 0])^n)[1,1], n >= 0.
See also a Feb 01 2016 comment on A115139 for a well-known S(n, x) sum formula.
Then we have with the present T triangle
A039834(n) = -i^(n+1)*T(n-1, k) where i is the imaginary unit and n >= 0.
A051286(n) = Sum_{i=0..n} T(n,i)^2 (see the Philippe Deléham, Nov 21 2005 formula),
A181545(n) = Sum_{i=0..n+1} abs(T(n,i)^3),
A181546(n) = Sum_{i=0..n+1} T(n,i)^4,
A181547(n) = Sum_{i=0..n+1} abs(T(n,i)^5).
S(n, 0) = A056594(n), and for k = 1..10 the sequences S(n-1, k) with offset n = 0 are A128834, A001477, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189.
(End)
For more on the Diophantine equation presented by Kul, see the Ismail paper. - Tom Copeland, Jan 31 2016
The o.g.f. for the Legendre polynomials L(n,x) is 1 / sqrt(1- 2x*z + z^2), and squaring it gives the o.g.f. of U(n,x), A053117, so Sum_{k=0..n} L(k,x/2) L(n-k,x/2) = S(n,x). This gives S(n,x) = L(n/2,x/2)^2 + 2*Sum_{k=0..n/2-1} L(k,x/2) L(n-k,x/2) for n even and S(n,x) = 2*Sum_{k=0..(n-1)/2} L(k,x/2) L(n-k,x/2) for odd n. For a connection to elliptic curves and modular forms, see A053117. For the normalized Legendre polynomials, see A100258. For other properties and relations to other polynomials, see Allouche et al. - Tom Copeland, Feb 04 2016
LG(x,h1,h2) = -log(1 - h1*x + h2*x^2) = Sum_{n>0} F(n,-h1,h2,0,..,0) x^n/n is a log series generator of the bivariate row polynomials of A127672 with A127672(0,0) = 0 and where F(n,b1,b2,..,bn) are the Faber polynomials of A263916. Exp(LG(x,h1,h2)) = 1 / (1 - h1*x + h2*x^2 ) is the o.g.f. of the bivariate row polynomials of this entry. - Tom Copeland, Feb 15 2016 (Instances of the bivariate o.g.f. for this entry are on pp. 5 and 18 of Sunada. - Tom Copeland, Jan 18 2021)
For distinct odd primes p and q the Legendre symbol can be written as Legendre(q,p) = Product_{k=1..P} S(q-1, 2*cos(2*Pi*k/p)), with P = (p-1)/2. See the Lemmermeyer reference, eq. (8.1) on p. 236. Using the zeros of S(q-1, x) (see above) one has S(q-1, x) = Product_{l=1..Q} (x^2 - (2*cos(Pi*l/q))^2), with Q = (q-1)/2. Thus S(q-1, 2*cos(2*Pi*k/p)) = ((-4)^Q)*Product_{l=1..Q} (sin^2(2*Pi*k/p) - sin^2(Pi*l/q)) = ((-4)^Q)*Product_{m=1..Q} (sin^2(2*Pi*k/p) - sin^2(2*Pi*m/q)). For the proof of the last equality see a W. Lang comment on the triangle A057059 for n = Q and an obvious function f. This leads to Eisenstein's proof of the quadratic reciprocity law Legendre(q,p) = ((-1)^(P*Q)) * Legendre(p,q), See the Lemmermeyer reference, pp. 236-237. - Wolfdieter Lang, Aug 28 2016
For connections to generalized Fibonacci polynomials, compare their generating function on p. 5 of the Amdeberhan et al. link with the o.g.f. given above for the bivariate row polynomials of this entry. - Tom Copeland, Jan 08 2017
The formula for Ramanujan's tau function (see A000594) for prime powers is tau(p^k) = p^(11*k/2)*S(k, p^(-11/2)*tau(p)) for k >= 1, and p = A000040(n), n >= 1. See the Hardy reference, p. 164, eqs. (10.3.4) and (10.3.6) rewritten in terms of S. - Wolfdieter Lang, Jan 27 2017
From Wolfdieter Lang, May 08 2017: (Start)
The number of zeros Z(n) of the S(n, x) polynomials in the open interval (-1,+1) is 2*b(n) for even n >= 0 and 1 + 2*b(n) for odd n >= 1, where b(n) = floor(n/2) - floor((n+1)/3). This b(n) is the number of integers k in the interval (n+1)/3 < k <= floor(n/2). See a comment on the zeros of S(n, x) above, and b(n) = A008615(n-2), n >= 0. The numbers Z(n) have been proposed (with a conjecture related to A008611) by Michel Lagneau, Mar 2017, as the number of zeros of Fibonacci polynomials on the imaginary axis (-I,+I), with I=sqrt(-1). They are Z(n) = A008611(n-1), n >= 0, with A008611(-1) = 0. Also Z(n) = A194960(n-4), n >= 0. Proof using the A008611 version. A194960 follows from this.
In general the number of zeros Z(a;n) of S(n, x) for n >= 0 in the open interval (-a,+a) for a from the interval (0,2) (x >= 2 never has zeros, and a=0 is trivial: Z(0;n) = 0) is with b(a;n) = floor(n//2) - floor((n+1)*arccos(a/2)/Pi), as above Z(a;n) = 2*b(a;n) for even n >= 0 and 1 + 2*b(a;n) for odd n >= 1. For the closed interval [-a,+a] Z(0;n) = 1 and for a from (0,1) one uses for Z(a;n) the values b(a;n) = floor(n/2) - ceiling((n+1)*arccos(a/2)/Pi) + 1. (End)
The Riordan row polynomials S(n, x) (Chebyshev S) belong to the Boas-Buck class (see a comment and references in A046521), hence they satisfy the Boas-Buck identity: (E_x - n*1)*S(n, x) = (E_x + 1)*Sum_{p=0..n-1} (1 - (-1)^p)*(-1)^((p+1)/2)*S(n-1-p, x), for n >= 0, where E_x = x*d/dx (Euler operator). For the triangle T(n, k) this entails a recurrence for the sequence of column k, given in the formula section. - Wolfdieter Lang, Aug 11 2017
The e.g.f. E(x,t) := Sum_{n>=0} (t^n/n!)*S(n,x) for the row polynomials is obtained via inverse Laplace transformation from the above given o.g.f. as E(x,t) = ((1/xm)*exp(t/xm) - (1/xp)*exp(t/xp) )/(xp - xm) with xp = (x + sqrt(x^2-4))/2 and xm = (x - sqrt(x^2-4))/2. - Wolfdieter Lang, Nov 08 2017
From Wolfdieter Lang, Apr 12 2018: (Start)
Factorization of row polynomials S(n, x), for n >= 1, in terms of C polynomials (not Chebyshev C) with coefficients given in A187360. This is obtained from the factorization into Psi polynomials (see the Jul 12 2011 comment above) but written in terms of minimal polynomials of 2*cos(2*Pi/n) with coefficients in A232624:
S(2*k, x) = Product_{2 <= d | (2*k+1)} C(d, x)*(-1)^deg(d)*C(d, -x), with deg(d) = A055034(d) the degree of C(d, x).
S(2*k+1, x) = Product_{2 <= d | 2*(k+1)} C(d, x) * Product_{3 <= 2*d + 1 | (k+1)} (-1)^(deg(2*d+1))*C(2*d+1, -x).
Note that (-1)^(deg(2*d+1))*C(2*d+1, -x)*C(2*d+1, x) pairs always appear.
The number of C factors of S(2*k, x), for k >= 0, is 2*(tau(2*k+1) - 1) = 2*(A099774(k+1) - 1) = 2*A095374(k), and for S(2*k+1, x), for k >= 0, it is tau(2*(k+1)) + tau_{odd}(k+1) - 2 = A302707(k), with tau(2*k+1) = A099774(k+1), tau(n) = A000005 and tau(2*(k+1)) = A099777(k+1).
For the reverse problem, the factorization of C polynomials into S polynomials, see A255237. (End)
The S polynomials with general initial conditions S(a,b;n,x) = x*S(a,b;n-1,x) - S(a,b;n-2,x), for n >= 1, with S(a,b;-1,x) = a and S(a,b;0,x) = b are S(a,b;n,x) = b*S(n, x) - a*S(n-1, x), for n >= -1. Recall that S(-2, x) = -1 and S(-1, x) = 0. The o.g.f. is G(a,b;z,x) = (b - a*z)/(1 - x*z + z^2). - Wolfdieter Lang, Oct 18 2019
Also the convolution triangle of A101455. - Peter Luschny, Oct 06 2022
From Wolfdieter Lang, Apr 26 2023: (Start)
Multi-section of S-polynomials: S(m*n+k, x) = S(m+k, x)*S(n-1, R(m, x)) - S(k, x)*S(n-2, R(m, x)), with R(n, x) = S(n, x) - S(n-2, x) (see A127672), S(-2, x) = -1, and S(-1, x) = 0, for n >= 0, m >= 1, and k = 0, 1, ..., m-1.
O.g.f. of {S(m*n+k, y)}_{n>=0}: G(m,k,y,x) = (S(k, y) - (S(k, y)*R(m, y) - S(m+k, y))*x)/(1 - R(m,y)*x + x^2).
See eqs. (40) and (49), with r = x or y and s =-1, of the G. Detlefs and W. Lang link at A034807. (End)
S(n, x) for complex n and complex x: S(n, x) = ((-i/2)/sqrt(1 - (x/2)^2))*(q(x/2)*exp(+n*log(q(x/2))) - (1/q(x/2))*exp(-n*log(q(x/2)))), with q(x) = x + sqrt(1 - x^2)*i. Here log(z) = |z| + Arg(z)*i, with Arg(z) from [-Pi,+Pi) (principal branch). This satisfies the recurrence relation for S because it is derived from the Binet - de Moivre formula for S. Examples: S(n/m, 0) = cos((n/m)*Pi/4), for n >= 0 and m >= 1. S(n*i, 0) = (1/2)*(1 + exp(n*Pi))*exp(-(n/2)*Pi), for n >= 0. S(1+i, 2+i) = 0.6397424847... + 1.0355669490...*i. Thanks to Roberto Alfano for asking a question leading to this formula. - Wolfdieter Lang, Jun 05 2023
Lim_{n->oo} S(n, x)/S(n-1, x) = r(x) = (x - sqrt(x^2 -4))/2, for |x| >= 2. For x = +-2, this limit is +-1. - Wolfdieter Lang, Nov 15 2023
REFERENCES
G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 164.
Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, p. 223.
Franz Lemmermeyer, Reciprocity Laws. From Euler to Eisenstein, Springer, 2000.
D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, 1970; p. 232, Sect. 3.3.38.
Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990, pp. 60 - 61.
R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer, 1999.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy], Table 22.8, p.797.
J. Allouche and G. Skordev, Schur congruences, Carlitz sequences of polynomials and automaticity, Discrete Mathematics, Vol. 214, Issue 1-3, 21 March 2000, p.21-49.
T. Amdeberhan, X. Chen, V. Moll, and B. Sagan, Generalized Fibonacci polynomials and Fibonomial coefficients, arXiv preprint arXiv:1306.6511 [math.CO], 2013.
Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
Paul Barry and A. Hennessy, Meixner-Type Results for Riordan Arrays and Associated Integer Sequences, J. Int. Seq. 13 (2010) # 10.9.4, section 5.
C. Beck, Spatio-temporal Chaos and Vacuum Fluctuations of Quantized Fields , arXiv preprint arXiv:0207081 [hep-th], 2002.
Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
S. R. Finch, P. Sebah and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008.
Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
M. Ismail, One parameter generalizations of the Fibonacci and Lucas numbers, arXiv preprint arXiv:0606743v1 [math.CA], 2006.
Wolfdieter Lang, The field Q(2cos(pi/n)), its Galois group and length ratios in the regular n-gon, arXiv:1210.1018 [math.GR], 2012-2017.
R. Sazdanovic, A categorification of the polynomial ring, slide presentation, 2011. [From Tom Copeland, Dec 27 2015]
P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
T. Sunada, Discrete Geometric Analysis, 2008.
FORMULA
T(n,k) := 0 if n < k or n+k odd, otherwise ((-1)^((n+k)/2+k))*binomial((n+k)/2, k); T(n, k) = -T(n-2, k)+T(n-1, k-1), T(n, -1) := 0 =: T(-1, k), T(0, 0)=1, T(n, k)= 0 if n < k or n+k odd; g.f. k-th column: (1 / (1 + x^2)^(k + 1)) * x^k. - Michael Somos, Jun 24 2002
T(n,k) = binomial((n+k)/2, (n-k)/2)*cos(Pi*(n-k)/2)*(1+(-1)^(n-k))/2. - Paul Barry, Aug 28 2005
Sum_{k=0..n} T(n,k)^2 = A051286(n). - Philippe Deléham, Nov 21 2005
Recurrence for the (unsigned) Fibonacci polynomials: F(1)=1, F(2)=x; for n > 2, F(n) = x*F(n-1) + F(n-2).
From Wolfdieter Lang, Nov 04 2011: (Start)
The Riordan A- and Z-sequences, given in a comment above, lead together to the recurrence:
T(n,k) = 0 if n < k, if k=0 then T(0,0)=1 and
T(n,0)= -Sum_{i=0..floor((n-1)/2)} C(i)*T(n-1,2*i+1), otherwise T(n,k) = T(n-1,k-1) - Sum_{i=1..floor((n-k)/2)} C(i)*T(n-1,k-1+2*i), with the Catalan numbers C(n)=A000108(n).
(End)
The row polynomials satisfy also S(n,x) = 2*(T(n+2, x/2) - T(n, x/2))/(x^2-4) with the Chebyshev T-polynomials. Proof: Use the trace formula 2*T(n, x/2) = S(n, x) - S(n-2, x) (see the Dec 02 2010 comment above) and the S-recurrence several times. This is a formula which expresses the S- in terms of the T-polynomials. - Wolfdieter Lang, Aug 07 2014
From Tom Copeland, Dec 06 2015: (Start)
The non-vanishing, unsigned subdiagonals Diag_(2n) contain the elements D(n,k) = Sum_{j=0..k} D(n-1,j) = (k+1) (k+2) ... (k+n) / n! = binomial(n+k,n), so the o.g.f. for the subdiagonal is (1-x)^(-(n+1)). E.g., Diag_4 contains D(2,3) = D(1,0) + D(1,1) + D(1,2) + D(1,3) = 1 + 2 + 3 + 4 = 10 = binomial(5,2). Diag_4 is shifted A000217; Diag_6, shifted A000292: Diag_8, shifted A000332; and Diag_10, A000389.
The non-vanishing antidiagonals are signed rows of the Pascal triangle A007318.
For a reversed, unsigned version with the zeros removed, see A011973. (End)
The Boas-Buck recurrence (see a comment above) for the sequence of column k is: S(n, k) = ((k+1)/(n-k))*Sum_{p=0..n-1-k} (1 - (-1)^p)*(-1)^((p+1)/2) * S(n-1-p, k), for n > k >= 0 and input S(k, k) = 1. - Wolfdieter Lang, Aug 11 2017
The m-th row consecutive nonzero entries in order are (-1)^c*(c+b)!/c!b! with c = m/2, m/2-1, ..., 0 and b = m-2c if m is even and with c = (m-1)/2, (m-1)/2-1, ..., 0 with b = m-2c if m is odd. For the 8th row starting at a(36) the 5 consecutive nonzero entries in order are 1,-10,15,-7,1 given by c = 4,3,2,1,0 and b = 0,2,4,6,8. - Richard Turk, Aug 20 2017
O.g.f.: exp( Sum_{n >= 0} 2*T(n,x/2)*t^n/n ) = 1 + x*t + (-1 + x^2)*t^2 + (-2*x + x^3)*t^3 + (1 - 3*x^2 + x^4)*t^4 + ..., where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Aug 15 2022
EXAMPLE
The triangle T(n, k) begins
n\k 0 1 2 3 4 5 6 7 8 9 10 11
0: 1
1: 0 1
2: -1 0 1
3: 0 -2 0 1
4: 1 0 -3 0 1
5: 0 3 0 -4 0 1
6: -1 0 6 0 -5 0 1
7: 0 -4 0 10 0 -6 0 1
8: 1 0 -10 0 15 0 -7 0 1
9: 0 5 0 -20 0 21 0 -8 0 1
10: -1 0 15 0 -35 0 28 0 -9 0 1
11: 0 -6 0 35 0 -56 0 36 0 -10 0 1
... Reformatted and extended by Wolfdieter Lang, Oct 24 2012
For more rows see the link.
E.g., fourth row {0,-2,0,1} corresponds to polynomial S(3,x)= -2*x + x^3.
From Wolfdieter Lang, Jul 12 2011: (Start)
Zeros of S(3,x) with rho(4)= 2*cos(Pi/4) = sqrt(2):
+- t(1,sqrt(2)) = +- sqrt(2) and
+- t(2,sqrt(2)) = +- 0.
Factorization of S(3,x) in terms of Psi polynomials:
S(3,x) = (2^3)*Psi(4,x/2)*Psi(8,x/2) = x*(x^2-2).
(End)
From Wolfdieter Lang, Nov 04 2011: (Start)
A- and Z- sequence recurrence:
T(4,0) = - (C(0)*T(3,1) + C(1)*T(3,3)) = -(-2 + 1) = +1,
T(5,3) = -3 - 1*1 = -4.
(End)
Boas-Buck recurrence for column k = 2, n = 6: S(6, 2) = (3/4)*(0 - 2* S(4 ,2) + 0 + 2*S(2, 2)) = (3/4)*(-2*(-3) + 2) = 6. - Wolfdieter Lang, Aug 11 2017
From Wolfdieter Lang, Apr 12 2018: (Start)
Factorization into C polynomials (see the Apr 12 2018 comment):
S(4, x) = 1 - 3*x^2 + x^4 = (-1 + x + x^2)*(-1 - x + x^2) = (-C(5, -x)) * C(5, x); the number of factors is 2 = 2*A095374(2).
S(5, x) = 3*x - 4*x^3 + x^5 = x*(-1 + x)*(1 + x)*(-3 + x^2) = C(2, x)*C(3, x)*(-C(3, -x))*C(6, x); the number of factors is 4 = A302707(2). (End)
MAPLE
A049310 := proc(n, k): binomial((n+k)/2, (n-k)/2)*cos(Pi*(n-k)/2)*(1+(-1)^(n-k))/2 end: seq(seq(A049310(n, k), k=0..n), n=0..11); # Johannes W. Meijer, Aug 08 2011
# Uses function PMatrix from A357368. Adds a row above and a column to the left.
PMatrix(10, n -> ifelse(irem(n, 2) = 0, 0, (-1)^iquo(n-1, 2))); # Peter Luschny, Oct 06 2022
MATHEMATICA
t[n_, k_] /; EvenQ[n+k] = ((-1)^((n+k)/2+k))*Binomial[(n+k)/2, k]; t[n_, k_] /; OddQ[n+k] = 0; Flatten[Table[t[n, k], {n, 0, 12}, {k, 0, n}]][[;; 86]] (* Jean-François Alcover, Jul 05 2011 *)
Table[Coefficient[(-I)^n Fibonacci[n + 1, - I x], x, k], {n, 0, 10}, {k, 0, n}] //Flatten (* Clark Kimberling, Aug 02 2011; corrected by Eric W. Weisstein, Apr 06 2017 *)
CoefficientList[ChebyshevU[Range[0, 10], -x/2], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
CoefficientList[Table[(-I)^n Fibonacci[n + 1, -I x], {n, 0, 10}], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
PROG
(PARI) {T(n, k) = if( k<0 || k>n || (n + k)%2, 0, (-1)^((n + k)/2 + k) * binomial((n + k)/2, k))} /* Michael Somos, Jun 24 2002 */
(SageMath)
@CachedFunction
def A049310(n, k):
if n< 0: return 0
if n==0: return 1 if k == 0 else 0
return A049310(n-1, k-1) - A049310(n-2, k)
for n in (0..9): [A049310(n, k) for k in (0..n)] # Peter Luschny, Nov 20 2012
(Magma)
A049310:= func< n, k | ((n+k) mod 2) eq 0 select (-1)^(Floor((n+k)/2)+k)*Binomial(Floor((n+k)/2), k) else 0 >;
[A049310(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 25 2022
CROSSREFS
Cf. A000005, A000217, A000292, A000332, A000389, A001227, A007318, A008611, A008615, A101455, A010892, A011973, A053112 (without zeros), A053117, A053119 (reflection), A053121 (inverse triangle), A055034, A097610, A099774, A099777, A100258, A112552 (first column clipped), A127672, A168561 (absolute values), A187360. A194960, A232624, A255237.
Triangles of coefficients of Chebyshev's S(n,x+k) for k = 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5: A207824, A207823, A125662, A078812, A101950, A049310, A104562, A053122, A207815, A159764, A123967.
KEYWORD
easy,nice,sign,tabl,core
STATUS
approved
Coefficient array for minimal polynomials of 2*cos(Pi/n) (rising powers of x).
+10
85
2, 1, 0, 1, -1, 1, -2, 0, 1, -1, -1, 1, -3, 0, 1, 1, -2, -1, 1, 2, 0, -4, 0, 1, -1, -3, 0, 1, 5, 0, -5, 0, 1, -1, 3, 3, -4, -1, 1, 1, 0, -4, 0, 1, -1, -3, 6, 4, -5, -1, 1, -7, 0, 14, 0, -7, 0, 1, 1, -4, -4, 1, 1, 2, 0, -16, 0, 20, 0, -8, 0, 1, 1, 4, -10, -10, 15, 6, -7, -1, 1
OFFSET
1,1
COMMENTS
The degree delta(n) of the monic integer row polynomial, call it C(n,x), is A055034(n).
This minimal polynomial of the algebraic number 2*cos(Pi/n), n>=1, is given by
C(n,x) = sum(a(n,m)*x^m,m=0..A055034(n)) = (2^delta(n))*Psi(2n,x/2), with Psi(n,x) the minimal polynomial of cos(2Pi/n), with rational coefficient array A181875/A181876. There also references and links are found. See especially Watkins and Zeitlin for Psi(n,x).
The zeros of C(n,x), n>=2, are 2*cos(Pi k/n), with k=1,...,n-1 and gcd(k,2n)=1. For n=1 the zero is -2. Alternatively, these zeros are 2*cos(Pi(2l+1)/n), with l=0,...,floor((n-2)/2) and gcd(2l+1,n)=1. For n=1 take l=0.
The first column looks like the differently signed A020513(n),n>=1.
The polynomial for row n=2^m, m>=1, coincides with the row polynomial R(2^(m-1),x) of A127672. See the factorization of these R-polynomials (also known as Chebyshev C-polynomials) given there. - Wolfdieter Lang, Sep 15 2011
From Wolfdieter Lang, Nov 04 2013: (Start)
The norm N(rho(n)) of rho(n) = 2*cos(Pi/n), n >= 1, in the algebraic number field Q(rho(n)) is given by (-1)^delta(n)* C(n, 0), with C(n, x) of degree delta(n) = A055034(n). If N(rho(n)) equals +1 or -1 then 1/rho(n), which is an element of Q(rho(n)), is in fact an integer in this number field. For the 1/rho(n) formula in terms of the C coefficients see A230079. Thus 1/rho(n) is a Q(rho(n))-integer if and only if C(n, 0) is +1 or -1 , and this happens if and only if n is from the set {A230078(k), k >= 2}.
The negation says that, for n a positive integer, 1/rho(n) is not a Q(rho(n))-integer if and only if n is 1 or of the form 2*p^m, m >= 0 and p a prime, which are the numbers of A138929 including 1.
The proof uses for case (i): n = 2*m+1, m >= 1, the fact that C(2*m+1, 0)^2 = (product( 2*cos(Pi*(2*l+1)/(2*m+1)), l=0 .. m-1 and gcd(2*l+1, 2*m+1) = 1))^2 = (product(2*cos(Pi*k/(2*m+1)), k=1..L and gcd(k, 2*m+1) = 1))^2 = cyclotomic(2*m +1, -1). See the linked Q(rho(n)) paper, eq. (31), for a product formula for cyclotomic(n, -1). With the prime factorization of 2*m+1, and the fact that only the squarefree kernel of 2*m+1 enters (see an Oct 29 2013 comment on A013595), one finds, form the formula for cyclotomic(p1*p2*...*pk, x) involving the Moebius function, cyclotomic(2*m +1, -1) = +1, m >= 1. C(1, 0) = +2. For case (ii): n even, one has C(2^m, 0) = 0, -2, +2, for m = 1 , 2, >=3, respectively (see eq. (39) of the linked Q(rho(n)) paper). For odd prime p: (-1)^((p-1)/2)*C(2*p^m, 0) = cyclotomic(2*p^m, -1) = cyclotomic(2*p, -1) = cyclotomic(p, +1) = p, for m >= 1. For more than one odd prime in the squarefree kernel of n = 2*m, m >= 1, one finds C(2*m, 0) = +1 from cyclotomic(2*p1*...*pk, -1) = +1, for k >= 2. (End)
For the conversion of the C-polynomials into sums of Chebyshev's S-polynomials (A049310) see A255237. - Wolfdieter Lang, Mar 16 2015
LINKS
Robert Israel, Table of n, a(n) for n = 1..10064 (first 220 rows, flattened)
Wolfdieter Lang, The field Q(2cos(pi/n)), its Galois group and length ratios in the regular n-gon, arXiv:1210.1018 [math.GR], 2012-2017.
Wolfdieter Lang, On the Equivalence of Three Complete Cyclic Systems of Integers, arXiv:2008.04300 [math.NT], 2020.
FORMULA
a(n,m) = [x^m] C(n,x), n>=1, m=0..A055034(n), with the minimal (monic and integer) polynomial C(n,x) of 2*cos(Pi/n). See the comment above.
EXAMPLE
n=1: 2, 1;
n=2: 0, 1;
n=3: -1, 1;
n=4: -2, 0, 1;
n=5: -1,-1, 1;
n=6: -3, 0, 1;
n=7: 1,-2,-1, 1;
n=8: 2, 0,-4, 0, 1;
n=9: -1,-3, 0, 1;
n=10: 5, 0,-5, 0, 1;
...
C(2,x) = R(1,x), C(4,x) = R(2,x), C(8,x) = R(4,x),... with R(n,x) from A127672. - Wolfdieter Lang, Sep 15 2011
MAPLE
f:= proc(n) local P, z, j;
P:= factor(evala(Norm(z-convert(2*cos(Pi/n), RootOf))));
if type(P, `^`) then P:= op(1, P) fi;
seq(coeff(P, z, j), j=0..degree(P));
end proc:
seq(f(n), n=1..20); # Robert Israel, Aug 04 2015
MATHEMATICA
Flatten[ CoefficientList[ Table[ MinimalPolynomial[2*Cos[Pi/n], x], {n, 1, 17}], x]] (* Jean-François Alcover, Sep 26 2011 *)
PROG
(PARI) halftot(n)=if(n<=2, 1, eulerphi(n)/2); \\ A023022
default(realprecision, 110);
row(n) = Vecrev(algdep(2*cos(2*Pi/n), halftot(n))); \\ Michel Marcus, Sep 19 2023
CROSSREFS
Cf. A192003 (row sums). A192004 (alternating row sums).
KEYWORD
sign,easy,tabf
AUTHOR
Wolfdieter Lang, Jul 14 2011
STATUS
approved
Number of partitions of n into two relatively prime parts. After initial term, this is the "half-totient" function phi(n)/2 (A000010(n)/2).
(Formerly N0058)
+10
81
1, 1, 1, 2, 1, 3, 2, 3, 2, 5, 2, 6, 3, 4, 4, 8, 3, 9, 4, 6, 5, 11, 4, 10, 6, 9, 6, 14, 4, 15, 8, 10, 8, 12, 6, 18, 9, 12, 8, 20, 6, 21, 10, 12, 11, 23, 8, 21, 10, 16, 12, 26, 9, 20, 12, 18, 14, 29, 8, 30, 15, 18, 16, 24, 10, 33, 16, 22, 12, 35, 12, 36, 18, 20, 18, 30, 12, 39, 16, 27, 20, 41, 12
OFFSET
2,4
COMMENTS
The number of distinct linear fractional transformations of order n. Also the half-totient function can be used to construct a tree containing all the integers. On the zeroth rank we have just the integers 1 and 2: immediate "ancestors" of 1 and 2 are (1: 3,4,6 2: 5,8,10,12) etc. - Benoit Cloitre, Jun 03 2002
Moebius transform of floor(n/2). - Paul Barry, Mar 20 2005
Also number of different kinds of regular n-gons, one convex, the others self-intersecting. - Reinhard Zumkeller, Aug 20 2005
From Artur Jasinski, Oct 28 2008: (Start)
Degrees of minimal polynomials of cos(2*Pi/n). The first few are
1: x - 1
2: x + 1
3: 2*x + 1
4: x
5: 4*x^2 + 2*x - 1
6: 2*x - 1
7: 8*x^3 + 4*x^2 - 4*x - 1
8: 2*x^2 - 1
9: 8*x^3 - 6*x + 1
10: 4*x^2 - 2*x - 1
11: 32*x^5 + 16*x^4 - 32*x^3 - 12*x^2 + 6*x + 1
These polynomials have solvable Galois groups, so their roots can be expressed by radicals. (End)
a(n) is the number of rationals p/q in the interval [0,1] such that p + q = n. - Geoffrey Critzer, Oct 10 2011
It appears that, for n > 2, a(n) = A023896(n)/n. Also, it appears that a record occurs at n > 2 in this sequence if and only if n is a prime. For example, records occur at n=5, 7, 11, 13, 17, ..., all of which are prime. - John W. Layman, Mar 26 2012
From Wolfdieter Lang, Dec 19 2013: (Start)
a(n) is the degree of the algebraic number of s(n)^2 = (2*sin(Pi/n))^2, starting at a(1)=1. s(n) = 2*sin(Pi/n) is the length ratio side/R for a regular n-gon inscribed in a circle of radius R (in some length units). For the coefficient table of the minimal polynomials of s(n)^2 see A232633.
Because for even n, s(n)^2 lives in the algebraic number field Q(rho(n/2)), with rho(k) = 2*cos(Pi/k), the degree is a(2*l) = A055034(l). For odd n, s(n)^2 is an integer in Q(rho(n)), and the degree is a(2*l+1) = A055034(2*l+1) = phi(2*l+1)/2, l >= 1, with Euler's totient phi=A000010 and a(1)=1. See also A232631-A232633.
(End)
Also for n > 2: number of fractions A182972(k)/A182973(k) such that A182972(k) + A182973(k) = n, A182972(n) and A182973(n) provide an enumeration of positive rationals < 1 arranged by increasing sum of numerator and denominator then by increasing numerator. - Reinhard Zumkeller, Jul 30 2014
Number of distinct rectangles with relatively prime length and width such that L + W = n, W <= L. For a(17)=8; the rectangles are 1 X 16, 2 X 15, 3 X 14, 4 X 13, 5 X 12, 6 X 11, 7 X 10, 8 X 9. - Wesley Ivan Hurt, Nov 12 2017
After including a(1) = 1, the number of elements of any reduced residue system mod* n used by Brändli and Beyne is a(n). See the examples below. - Wolfdieter Lang, Apr 22 2020
a(n) is the number of ABC triples with n = c. - Felix Huber, Oct 12 2023
REFERENCES
G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Eight, Chap. 1, Sect. 6, Problems 60&61.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
LINKS
Gerold Brändli and Tim Beyne, Modified Congruence Modulo n with Half the Amount of Residues, arXiv:1504.02757 [math.NT], 2016.
Tianxin Cai, Zhongyan Shen, and Mengjun Hu, On the Parity of the Generalized Euler Function, Advances in Mathematics (China), 2013, 42(4): 505-510.
Daniele A. Gewurz and Francesca Merola, Sequences realized as Parker vectors of oligomorphic permutation groups, J. Integer Seqs., Vol. 6, 2003.
Sameen Ahmed Khan, Trigonometric Ratios Using Algebraic Methods, Mathematics and Statistics (2021) Vol. 9, No. 6, 899-907.
Wolfdieter Lang, On the Equivalence of Three Complete Cyclic Systems of Integers, arXiv:2008.04300 [math.NT], 2020.
Jorma K. Merikoski, Pentti Haukkanen, and Timo Tossavainen, The congruence x^n = -a^n (mod m): Solvability and related OEIS sequences, Notes. Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 516-529. See p. 518.
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
Pinthira Tangsupphathawat, Takao Komatsu, and Vichian Laohakosol, Minimal Polynomials of Algebraic Cosine Values, II, J. Int. Seq., Vol. 21 (2018), Article 18.9.5.
Eric Weisstein's World of Mathematics, Polygon Triangle Picking
Eric Weisstein's World of Mathematics, Trigonometry Angles
Canze Zhu and Qunying Liao, A recursion formula for the generalized Euler function phi_e(n), arXiv:2105.10870 [math.NT], 2021.
FORMULA
a(n) = phi(n)/2 for n >= 3.
a(n) = (1/n)*Sum_{k=1..n-1, gcd(n, k)=1} k = A023896(n)/n for n>2. - Reinhard Zumkeller, Aug 20 2005
G.f.: x*(x - 1)/2 + (1/2)*Sum_{k>=1} mu(k)*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Apr 13 2017
a(n) = Sum_{d|n} moebius(n/d)*floor(d/2). - Michel Marcus, May 25 2021
EXAMPLE
a(15)=4 because there are 4 partitions of 15 into two parts that are relatively prime: 14 + 1, 13 + 2, 11 + 4, 8 + 7. - Geoffrey Critzer, Jan 25 2015
The smallest nonnegative reduced residue system mod*(n) for n = 1 is {0}, hence a(1) = 1; for n = 9 it is {1, 2, 4}, because 5 == 4 (mod* 9) since -5 == 4 (mod 9), 7 == 2 (mod* 9) and 8 == 1 (mod* 9). Hence a(9) = phi(9)/2 = 3. See the comment on Brändli and Beyne above. - Wolfdieter Lang, Apr 22 2020
MAPLE
A023022 := proc(n)
if n =2 then
1;
else
numtheory[phi](n)/2 ;
end if;
end proc:
seq(A023022(n), n=2..60) ; # R. J. Mathar, Sep 19 2017
MATHEMATICA
Join[{1}, Table[EulerPhi[n]/2, {n, 3, 100}]] (* adapted by Vincenzo Librandi, Aug 19 2018 *)
PROG
(PARI) a(n)=if(n<=2, 1, eulerphi(n)/2);
/* for printing minimal polynomials of cos(2*Pi/n) */
default(realprecision, 110);
for(n=1, 33, print(n, ": ", algdep(cos(2*Pi/n), a(n))));
(Haskell)
a023022 n = length [(u, v) | u <- [1 .. div n 2],
let v = n - u, gcd u v == 1]
-- Reinhard Zumkeller, Jul 30 2014
(Python)
from sympy.ntheory import totient
def a(n): return 1 if n<3 else totient(n)/2 # Indranil Ghosh, Mar 30 2017
(Magma) [1] cat [EulerPhi(n)/ 2: n in [3..100]]; // Vincenzo Librandi, Aug 19 2018
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane. This was in the 1973 "Handbook", but then was dropped from the database. Resubmitted by David W. Wilson.
EXTENSIONS
Entry revised by N. J. A. Sloane, Jun 10 2012
Polynomials edited with the consent of Artur Jasinski by Wolfdieter Lang, Jan 08 2011
Name clarified by Geoffrey Critzer, Jan 25 2015
STATUS
approved
Denominators of coefficient array of minimal polynomials of cos(2*Pi/n). Rising powers in x.
+10
11
1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 2, 1, 8, 2, 2, 1, 2, 1, 1, 8, 4, 1, 1, 4, 2, 1, 32, 16, 8, 1, 2, 1, 4, 1, 1, 64, 32, 8, 2, 4, 2, 1, 8, 2, 2, 1, 16, 2, 1, 2, 1, 8, 1, 1, 1, 1, 256, 32, 32, 16, 16, 4, 4, 2, 1, 8, 4, 1, 1, 512, 256, 64, 16, 32, 16, 8, 1, 2, 1, 16, 1, 4, 1, 1, 64, 4, 2, 4, 2, 2
OFFSET
1,5
COMMENTS
The corresponding numerator array is A181875(n,m).
The sequence of row lengths is d(n)+1, with d(n):=A023022(n), n >= 2, and d(1):=1: [2, 2, 2, 2, 3, 2, 4, 3, 4, 3, 6, 3, 7, 4, 5, 5, 9, 4, 10, 5, 7, ...].
For details on the monic, minimal degree rational polynomial with one of its zeros cos(2*Pi/n), n >= 1 (so-called minimal polynomial of cos(2*Pi/n)), see the array A181875(n,m) where also references are found.
REFERENCES
See A181875.
FORMULA
a(n,m) = denominator([x^m]Psi(n,x)), with the minimal polynomial Psi(n,x) of cos(2*Pi/n), n >= 1. See A181875 for details and references.
EXAMPLE
[1,1], [1,1], [2,1], [1,1], [4,2,1], [2,1], [8,2,2,1], [2,1,1], [8,4,1,1], [4,2,1], ...
MATHEMATICA
ro[n_] := Denominator[ cc = CoefficientList[ MinimalPolynomial[ Cos[2*Pi/n], x], x] ; cc/Last[cc]]; Flatten[Table[ro[n], {n, 1, 21}]] (* Jean-François Alcover, Sep 27 2011 *)
CROSSREFS
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang, Jan 08 2011
STATUS
approved
Integer coefficient array for polynomials related to the minimal polynomials of cos(2Pi/n). Rising powers of x.
+10
10
-2, 2, 2, 2, 1, 2, 0, 2, -1, 2, 4, -1, 2, -1, -4, 4, 8, -2, 0, 4, 1, -6, 0, 8, -1, -2, 4, 1, 6, -12, -32, 16, 32, -3, 0, 4, -1, 6, 24, -32, -80, 32, 64, 1, -4, -4, 8, 1, 8, -16, -8, 16, 2, 0, -16, 0, 16, 1, -8, -40, 80, 240, -192, -448, 128, 256, -1, -6, 0, 8, 1, 10, -40, -160, 240, 672, -448, -1024, 256, 512, 5, 0, -20, 0, 16, 1, -16, 32, 48, -96, -32, 64, -1, 6, 12, -32, -16, 32, -1, -12, 60, 280, -560, -1792, 1792, 4608, -2304, -5120, 1024, 2048, 1, 0, -16, 0, 16, -1, 10, 100, -40, -800, 32, 2240, 0, -2560, 0, 1024, -1, -6, 24, 32, -80, -32, 64, 1, 18, 0, -240, 0, 864, 0, -1152, 0, 512, -7, 0, 56, 0, -112, 0, 64, -1, 14, 112, -448, -2016, 4032, 13440, -15360, -42240, 28160, 67584, -24576, -53248, 8192, 16384, 1, -8, -16, 8, 16
OFFSET
1,1
COMMENTS
The sequence of row lengths is d(n)+1, with d(n):=A023022(n), n>=2, and d(1):=1: [2, 2, 2, 2, 3, 2, 4, 3, 4, 3, 6, 3, 7, 4, 5, 5, 9, 4, 10, 5, 7,...].
psi(n,x):=sum(a(n,m)*x^m,m=0..d(n)), with the degree d(n):=A023022(n), n>=2, d(1):=1, equals (2^d(n))*Psi(n,x), with the minimal polynomials Psi(n,x) of cos(2*Pi/n), n>=1. See A181875/A181876 for the rational coefficient array of the monic Psi(n,x).
See A232624 for the (monic integer) minimal polynomials of 2*cos(2*Pi/n), called there MR2(n,x) = psi(n, x/2). - Wolfdieter Lang, Nov 29 2013
REFERENCES
I. Niven, Irrational Numbers, The Math. Assoc. of America, second printing, 1963, distributed by John Wiley and Sons.
LINKS
D. H. Lehmer, A Note on Trigonometric Algebraic Numbers, Am. Math. Monthly 40,3 (1933) 165-6.
W. Watkins and J. Zeitlin, The Minimal Polynomial of cos(2Pi/n), Am. Math. Monthly 100,5 (1993) 471-4.
FORMULA
a(n,m) = [x^m]((2^d(n))*Psi(n,x)), with the minimal polynomials Psi(n,x) of cos(2*Pi/n), n>=1. See A181875(n,m)/A181876(n,m) for the rational Psi(n,x) coefficients.
EXAMPLE
[-2, 2], [2, 2], [1, 2], [0, 2], [-1, 2, 4], [-1, 2], [-1, -4, 4, 8], [-2, 0, 4], [1, -6, 0, 8], [-1, -2, 4], [1, 6, -12, -32, 16, 32],...
MATHEMATICA
ro[n_] := (cc = CoefficientList[ p = MinimalPolynomial[ Cos[2*(Pi/n)], x], x]; 2^Exponent[p, x]*(cc / Last[cc])); Flatten[ Table[ ro[n], {n, 1, 30}]] (* Jean-François Alcover, Sep 28 2011 *)
CROSSREFS
Cf. A232624. - Wolfdieter Lang, Nov 29 2013
KEYWORD
sign,easy,tabf
AUTHOR
Wolfdieter Lang, Jan 08 2011
STATUS
approved
Numerators of coefficient array for minimal polynomials of sin(2*Pi/n). Rising powers of x.
+10
8
0, 1, 0, 1, -3, 0, 1, -1, 1, 5, 0, -5, 0, 1, -3, 0, 1, -7, 0, 7, 0, -7, 0, 1, -1, 0, 1, -3, 0, 9, 0, -3, 0, 1, 5, 0, -5, 0, 1, -11, 0, 55, 0, -77, 0, 11, 0, -11, 0, 1, -1, 1, 13, 0, -91, 0, 91, 0, -39, 0, 65, 0, -13, 0, 1, -7, 0, 7, 0, -7, 0, 1, 1, 0, -1, 0, 7, 0, -7, 0, 1, 1, 0, -1, 0, 1, 17, 0, -51, 0, 357, 0, -561, 0, 935, 0, -221, 0, 119, 0, -17, 0, 1, -3, 0, 9, 0, -3, 0, 1, -19, 0, 285, 0, -627, 0, 627, 0, -2717, 0, 1729, 0, -665, 0, 19, 0, -19, 0, 1, -1, 1, 1, 1, 0, -1, 0, 15, 0, -39, 0, 11, 0, -11, 0, 1, -11, 0, 55, 0, -77, 0, 11, 0, -11, 0, 1
OFFSET
1,5
COMMENTS
The corresponding denominator array is given in A181873(n,m).
The sequence of row lengths of this array is A093819(n)+1: [2, 2, 3, 2, 5, 3, 7, 3, 7, 5, 11, ...].
The minimal polynomial of the algebraic number sin(2*Pi/n), n >= 1, is here called Pi(n,x) := Sum_{m=0..d(n)} r(n,m)*x^m with the degree sequence d(n):=A093819(n), and the rationals r(n):=a(n,m)/b(n,m) with b(n,m):=A181873(n,m).
See the Niven reference, p. 28, for the definition of 'minimal polynomial of an algebraic number'.
Minimal polynomials are irreducible.
The minimal polynomials of sin(2*Pi/n) are treated, e.g., in the Lehmer, Niven and Watkins-Zeitlin references.
The minimal polynomials Pi(n,x) of sin(2*Pi/n) are found from Psi(c(n),x), where Psi(m,x) is the minimal polynomial of cos(2*Pi/m), and
c(n):= denominator(|(4-n)/(4*n)|) = A178182(n).
For the regular n-gon inscribed in the unit circle the area is n*sin(2*Pi/n). See the remark by Jack W Grahl under A093819.
S. Beslin and V. de Angelis (see the reference) give an explicit formula for the (integer) minimal polynomial of sin(2*Pi/p), called S_p(x), and cos(2*Pi/p), called C_p(x),for odd prime p, p=2k+1, with the results:
S_p(x) = Sum_{l=0..k} ((-1)^l)*binomial(p,2*l+1)*(1-x^2)^(k-l)*x^(2*l), and C_p(x) = S_p(sqrt((1-x)/2)), where S_p(x), with leading term ((-2)^k))*x^(p-1), checks with((-2)^k)*Pi(p,x). - Wolfdieter Lang, Feb 28 2011
The zeros of Pi(n, x) result from those of the minimal polynomial Psi(n, x) of cos(2*Pi/n), and they are cos(2*Pi*k/n), for k = 0, ..., floor(c(n)/2), with c(n) = A178182(n), and restriction gcd(k, c(n)) = 1, for n >= 1. There are d(n) = A093819(n) such zeros. - Wolfdieter Lang, Oct 30 2019
REFERENCES
I. Niven, Irrational Numbers, The Math. Assoc. of America, second printing, 1963, distributed by John Wiley and Sons.
LINKS
S. Beslin and V. de Angelis, The minimal Polynomials of sin(2Pi/p) and cos(2Pi/p), Mathematics Mag. 77.2 (2004) 146-9.
D. H. Lehmer, A Note on Trigonometric Algebraic Numbers, Am. Math. Monthly 40 (3) (1933) 165-6.
W. Watkins and J. Zeitlin, The Minimal Polynomial of cos(2Pi/n), Am. Math. Monthly 100,5 (1993) 471-4.
FORMULA
a(n,m) = numerator([x^m]Pi(n,x)), n>=1, m=0..A093819(n). For Pi(n,x) see the comments.
The minimal polynomial Pi(n,x) = Product_{k=0..floor(c(n)/2), gcd(k, c(n)) = 1}, x - cos(2*Pi*k/c(n)), for n >= 1. - Wolfdieter Lang, Oct 30 2019
EXAMPLE
Triangle begins:
[0, 1],
[0, 1],
[-3, 0, 1],
[-1, 1],
[5, 0, -5, 0, 1],
[-3, 0, 1],
[-7, 0, 7, 0, -7, 0, 1],
[-1, 0, 1],
[-3, 0, 9, 0, -3, 0, 1],
[5, 0, -5, 0, 1],
...
The rational coefficients r(n,m) start like:
[0, 1],
[0, 1],
[-3/4, 0, 1],
[-1, 1],
[5/16, 0, -5/4, 0, 1],
[-3/4, 0, 1],
[-7/64, 0, 7/8, 0, -7/4, 0, 1],
[-1/2, 0, 1],
[-3/64, 0, 9/16, 0, -3/2, 0, 1],
...
Pi(6,n) = Psi(c(6),x) = Psi(12,x) = x^2-3/4.
MATHEMATICA
p[n_, x_] := MinimalPolynomial[ Sin[2 Pi/n], x]; Flatten[ Numerator[ Table[ coes = CoefficientList[ p[n, x], x]; coes / Last[coes], {n, 1, 22}]]] (* Jean-François Alcover, Nov 07 2011 *)
CROSSREFS
Cf. A181875, A181876 (minimal polynomials of cos(2*Pi/n)).
KEYWORD
sign,easy,frac,tabf
AUTHOR
Wolfdieter Lang, Jan 13 2011
STATUS
approved
a(n) = 2^(3^(n-1)).
+10
7
2, 8, 512, 134217728, 2417851639229258349412352, 14134776518227074636666380005943348126619871175004951664972849610340958208
OFFSET
1,1
COMMENTS
a(n+1) = a(n) converted to base 8 from base 2 (written in base 10).
Number of disjunctive-normal forms of n-1 variables (either with x, or x-negated or without x). - Labos Elemer, Jul 24 2003
a(n)*Psi(3^n,x), with the (monic) minimal polynomial Psi(3^n,x) of cos(2*Pi/3^n), becomes an integer polynomial with coefficient 1 of x^0.
E.g., 8*Psi(9,x)=8*(x^3 - (3/4)*x + 1/8) = 8*x^3 - 6*x + 1.
See A181875/A181876, A181877 and the W. Lang link under A181875. - Wolfdieter Lang, Feb 24 2011
The next term (a(7)) has 220 digits. - Harvey P. Dale, Aug 10 2014
These seem to be the reduced denominators of Newton's iteration for 1/sqrt(2), starting with 1/2. - Steven Finch, Oct 08 2024
LINKS
W. van der Aalst, J. Buijs and B. van Dongen, Towards Improving the Representational Bias of Process Mining, 2012. - From N. J. A. Sloane, Feb 03 2013
X. Gourdon and P. Sebah, Pythagoras' Constant. - From Steven Finch, Oct 07 2024
FORMULA
a(n) = a(n-1)^3.
a(n) = A000079(A000244(n-1)).
a(n+1) is conjectured to be the reduced denominator of b(n) = b(n-1)*(3/2 - b(n-1)^2); b(0) = 1/2. - Steven Finch, Oct 08 2024
Limit_{n -> oo} A376867(n-1)/a(n) = 1/sqrt(2) = A010503. - Steven Finch, Oct 08 2024
MATHEMATICA
NestList[#^3&, 2, 6] (* Harvey P. Dale, Aug 10 2014 *)
PROG
(Magma) [Floor(2^(3^(n-1))): n in [1..10]]; // Vincenzo Librandi, Aug 11 2014
(Python)
def A023365(n): return 1<<3**(n-1) # Chai Wah Wu, Oct 11 2024
(Sage) [2^(3^(n-1)) for n in range(1, 8)] # Stefano Spezia, Oct 15 2024
KEYWORD
nonn
STATUS
approved
Minimal polynomials of sin(2Pi/n) are mapped to those of cos(2Pi/a(n)).
+10
7
4, 4, 12, 1, 20, 12, 28, 8, 36, 20, 44, 6, 52, 28, 60, 16, 68, 36, 76, 5, 84, 44, 92, 24, 100, 52, 108, 14, 116, 60, 124, 32, 132, 68, 140, 9, 148, 76, 156, 40, 164, 84, 172, 22, 180, 92, 188, 48, 196, 100, 204, 13, 212, 108, 220, 56, 228, 116, 236, 30, 244, 124, 252, 64, 260, 132, 268, 17, 276, 140, 284, 72, 292, 148, 300, 38, 308, 156, 316, 80
OFFSET
1,1
COMMENTS
The minimal polynomials of cos(2*Pi/n) are treated, e.g. in the Lehmer, Niven and Watkins-Zeitlin references. Lehmer and Niven call them psi_n(x) (eq. (1) and Lemma 3.8, p.37, respectively). In the latter reference they are called Psi_n(x), and we call them Psi(n,x). By definition (Niven, p. 28) these are monic, rational polynomials which have as a root cos(2*Pi/n) and are of minimal degree. They are irreducible (Niven p. 37, Lemma 3.8). See also A181875 for more details and a link with Psi(n,x), n=1..30.
The minimal polynomials of sin(2*Pi/n) are treated, e.g. in the Lehmer and Niven references. Lehmer's theorem 2 is, however, incorrect. See A181872 and the link there for a counterexample. In this link one can also find these polynomials, called Pi(n,x), for n=1..30.
The sequence a(n) translates these polynomials: Pi(n,x) = Psi(a(n),x), n >= 1. This translation is based on the trigonometric identity: sin(2*Pi/n) = cos(2*Pi*r(n)), with r(n):=|(4-n)/(4*n)|.
a(n):=denominator(r(n)) (in lowest terms). Note that the degrees agree with those given in the Niven reference, Theorem 3.9, p. 37.
REFERENCES
I. Niven, Irrational Numbers, The Math. Assoc. of America, second printing, 1963, distributed by John Wiley and Sons.
LINKS
D. H. Lehmer, A Note on Trigonometric Algebraic Numbers, Am. Math. Monthly 40,3 (1933) 165-6.
Pinthira Tangsupphathawat, Takao Komatsu, Vichian Laohakosol, Minimal Polynomials of Algebraic Cosine Values, II, J. Int. Seq., Vol. 21 (2018), Article 18.9.5.
W. Watkins and J. Zeitlin, The Minimal Polynomial of cos(2Pi/n), Am. Math. Monthly 100,5 (1993) 471-4.
FORMULA
a(n) = denominator(|(n-4)/(4*n)|), n >= 1.
a(n) = 4*n/gcd(n-4,16). a(n) = 4*n if n is odd; if n is even then a(n) = 2*n if n/2 == 1, 3, 5, 7 (mod 8), a(n) = n if n/2 == 0, 4 (mod 8), a(n) = n/2 if n/2 == 6 (mod 8) and a(n) = n/4 if n/2 == 2 (mod 8). - Wolfdieter Lang, Dec 01 2013
a(2*n)/(2*n) = 1/4, 1/2, 1, and 2, for n == 2 (mod 8), 6 (mod 8), 0 (mod 4), and 1 (mod 2), for n >= 1. The reciprocal can be used in a formula for the zeros of the minimal polynomials of 2*sin(Pi/2) (A228786). See A327921. - Wolfdieter Lang, Nov 02 2019
EXAMPLE
Pi(5,x) = Psi(20,x) because sin(2*Pi/5) = cos(2*Pi/20).
MATHEMATICA
Array[4 #/GCD[# - 4, 16] &, 80] (* Michael De Vlieger, Feb 07 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jan 11 2011
STATUS
approved
Characteristic sequence for cos(2*Pi/n) being rational.
+10
6
1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1
COMMENTS
Sequence 1, 1, 1, 0, 1, followed by zeros.
The minimal polynomial of cos(2*Pi/n) has degree 1 iff a(n)=1. See, e.g., the Niven reference for the definition of minimal polynomial of an algebraic number on p. 28, the Corollary 3.12 on p. 41, and one of the tables in the D. H. Lehmer reference, p. 166.
In the Watkins and Zeitlin reference a recurrence for the minimal polynomial of cos(2*Pi/n) is found.
Binary expansion of 61/64. - Moritz Firsching, Mar 01 2016
REFERENCES
I. Niven, Irrational Numbers, The Math. Assoc. of America, second printing, 1963, distributed by John Wiley and Sons.
LINKS
D. H. Lehmer, A Note on Trigonometric Algebraic Numbers, Am. Math. Monthly 40 (3) (1933) 165-6.
W. Watkins and J. Zeitlin, The Minimal Polynomial of cos(2Pi/n), Am. Math. Monthly 100,5 (1993) 471-4.
FORMULA
a(n)=1 if cos(2*Pi/n) is rational, and a(n)=0 if it is irrational. The rational values for n = 1, 2, 3, 4, 6, are 1, -1, -1/2, 0, +1/2, respectively.
a(n)=1 if Psi(n,x), the characteristic polynomial of cos(2*Pi/n), has degree 1, and a(n)=0 otherwise. See the Watkins and Zeitlin reference for Psi(n,x), called there Psi_n(x). See also the comment by A. Jasinski on A023022, and the W. Lang link for a table for n = 1..30.
EXAMPLE
Psi(6,x) = x - 1/2 and Psi(5,x) = x^2 - (1/2)*x - 1/4. Therefore a(6)=1 and a(5)=0.
CROSSREFS
Cf. A023022 (the degree sequence with A023022(1):=1).
Cf. A183919 (the characteristic sequence for sin(2*Pi/n) being rational).
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jan 08 2011
STATUS
approved
Coefficient array for the minimal polynomials of 2*cos(2*Pi/n) for n >= 1.
+10
6
-2, 1, 2, 1, 1, 1, 0, 1, -1, 1, 1, -1, 1, -1, -2, 1, 1, -2, 0, 1, 1, -3, 0, 1, -1, -1, 1, 1, 3, -3, -4, 1, 1, -3, 0, 1, -1, 3, 6, -4, -5, 1, 1, 1, -2, -1, 1, 1, 4, -4, -1, 1, 2, 0, -4, 0, 1, 1, -4, -10, 10, 15, -6, -7, 1, 1, -1, -3, 0, 1, 1, 5, -10, -20, 15, 21, -7, -8, 1, 1, 5, 0, -5, 0, 1, 1, -8, 8, 6, -6, -1, 1, -1, 3, 3, -4, -1, 1
OFFSET
1,1
COMMENTS
The length of row n is deg(n) + 1, n >= 1, with the degree deg(1) = deg(2) = 1, and deg(n) = phi(n)/2 = A023022(n) for n >= 3. That is: 2, 2, 2, 2, 3, 2, 4, 3, 4, 3, 6, 3, 7, 4, 5, 5, 9, 4, 10, 5, ...
2*cos(2*Pi/n) = R(2, rho(n)) = -2 + rho(n)^2, with rho(n) = 2*cos(Pi/n) and the monic Chebyshev T-polynomials R(n, x), n>=1, with coefficient table A127672. For even n 2*cos(2*Pi/n) becomes rho(n/2). Therefore, 2*cos(2*Pi/n) is an integer in the algebraic number field Q(rho(n/2)) or Q(rho(n)) if n is even or odd, respectively. The degree deg(n) of the minimal polynomials, call them MPR2(n, x), is delta(n/2) or delta(n) for even or odd n, respectively, with delta(n) = A055034(n). This becomes deg(n) as given above.
These minimal polynomials are C(n/2, x) if n is even, with C(k, x) the minimal polynomials of rho(k) given in A187360.
For odd n the known zeros of C(n, x) are rho(n) and its conjugates, call them rho(n;j), j=1, 2, ..., delta(n), with rho(n;1) = rho(n). These conjugates can be written in the power basis of Q(rho(2*l+1)), l >= 1. See the link to the Q(2cos(Pi/n)) paper in A187360, and there Table 4. Then the (monic) minimal polynomial MPR2(2*l+1, x) = Product_{j=1..delta(2*l+1)} (x - (-2 + rho(2*l+1;j)^2)), l >= 0. After expansion all powers of rho(2*l+1) not smaller than delta(2*l+1) are reduced with the help of C(2*l+1,rho(2*l+1)) = 0, leading automatically to integer coefficients (without using the trigonometric version of rho(2*l+1)).
Compare the present minimal polynomials with the (non-monic) minimal polynomials of cos(2*Pi/n) given in an Artur Jasinski comment from Oct 28 2008 on A023022.
The present monic integer minimal polynomials of 2*cos(2*Pi/n), called MPR2(n, x), are related to the non-monic integer minimal polynomials of 2*cos(2*Pi/n) of A181877, called there psi(n, x) by MPR2(n, x) = psi(n, x/2). See Table 5 of the Wolfdieter Lang link given there. - Wolfdieter Lang, Nov 29 2013
The present minimal polynomials MPR2(n, x) are C(n/2, x) if n is even (see above) and (-1)^degC(n)*C(n, -x) if n is odd, with the C polynomials from A187360 of degree degC(n) = A055034(n). Note that degC(2*k+1) = deg(2*k+1) = A023022(2*k+1), k >= 0. - Wolfdieter Lang, Apr 12 2018
Let {U(n, x)} be defined as: U(0, x) = 0, U(1, x) = 1, U(n, x) = x*U(n-1, x) - U(n-2, x) for n >= 2, then U(n, x) = Product_{k|2n, k>=3} MPR2(k, x) for n > 0, because U(n, x) = Product_{m=1..n-1} (x - 2*cos(Pi*m/n)) for n > 0. - Jianing Song, Jul 08 2019
Conjecture: For odd n > 1, the term of the highest degree of (MPR2(2n, x) - MPR2(n, x))/2 is (-1)^omega(n) * x^(phi(n)/2-n/rad(n)) = A076479(n) * x^(A023022(n)-A003557(n)). For example, for n = 15, (MPR2(30, x) - MPR2(15, x))/2 = x^3 - 4x; for n = 105, (MPR2(210, x) - MPR2(105, x))/2 = -x^23 + ...; for n = 225, (MPR2(450, x) - MPR2(225, x))/2 = x^45 + ... If this is true, then for odd n > 1, a(n,A023022(n)-k) = a(2n,A023022(n)-k) = 0 for k = 1, 3, ..., A003557(n)-2; a(n,A023022(n)-A003557(n)) = -A076479(n) and a(2n,A023022(n)-A003557(n)) = A076479(n). - Jianing Song, Jul 11 2019
Conjecture: Let MPR2(n, x) equal the odd indexed (n) monic polynomial. If the number of roots with negative signs is even, then n is a term in A014659. Example: n = 7 for x^3 + x^2 - 2x - 1, having two negative roots, (-445041..., and -1.801937...). Two is even so the integer 7 is in A014659. n = 9 for the polynomial x^3 - 3x + 1, with one negative root, (-1.87938). The term 9 is in A014657. - Gary W. Adamson, Oct 20 2021
From Gary W. Adamson, Nov 30 2021 (Start)
Given the first (phi(n))/2 terms for odd n, the number of even terms in the set is equal to the number of positive roots in MPR2(n, x). The number of odd terms is equal to the number of negative roots in MPR2(n, x). For n = 11, (phi(11))/2 = 5, and the set is (1, 2, 3, 4, 5); having two even and three odd terms.
Given MPR2(11, x) = x^5 + x^4 - 4x^3 - 3x^2 + 3x + 1, there are two roots with positive signs: 1.682508..., and .830830...; and three roots with negative signs: -1.918985..., -1.309921..., and -.284629....Using the Descartes' rule for signs, MPR2(11, x) has coefficients signed (+ + - - + +); having two sign changes indicating two positive roots. With all real roots there are three (= 5 - 2) roots signed negative. (End)
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..14000 (rows 1 <= n <= 300, flattened)
Wolfdieter Lang, On the Equivalence of Three Complete Cyclic Systems of Integers, arXiv:2008.04300 [math.NT], 2020.
FORMULA
a(n,m) = [x^m] MPR2(n, x), n >= 1, m=0, 1, ..., deg(n), with MPR2(n, x) the (monic) minimal polynomials of 2*cos(2*Pi/n), explained in a comment above. The degree is deg(1) = deg(2) = 1, deg(n) = phi(n)/2 = A023022(n), n >= 3 (phi is the Euler totient function A000010).
From Jianing Song, Jul 09 2019: (Start)
MPR2(n, x) = Product_{0<=m<=n/2, gcd(m, n)=1} (x - 2*cos(2*Pi*m/n)).
If 4 divides n, then MPR2(n, x) = Product_{k|(n/2)} U((n/2)/k, x)^mu(k), where U(n, x) is the polynomial defined in comment and mu = A008683. For odd n, MPR2(n, x)*MPR2(2n, x) = Product_{k|n} U(n/k, x)^mu(k).
If 4 divides n and n > 4, then a(n,2k+1) = 0, that is, MPR2(n, x) contains even powers of x only.
For odd n > 1, a(2n,k) = a(n,k)*(-1)^(A023022(n)-k). (End)
EXAMPLE
The table a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 ...
1: -2 1
2: 2 1
3: 1 1
4: 0 1
5: -1 1 1
6: -1 1
7: -1 -2 1 1
8: -2 0 1
9: 1 -3 0 1
10: -1 -1 1
11: 1 3 -3 -4 1 1
12: -3 0 1
13: -1 3 6 -4 -5 1 1
14: 1 -2 -1 1
15: 1 4 -4 -1 1
16: 2 0 -4 0 1
17: 1 -4 -10 10 15 -6 -7 1 1
18: -1 -3 0 1
19: 1 5 -10 -20 15 21 -7 -8 1 1
20: 5 0 -5 0 1
...
MPR2(14, x) = C(7, x) = 1 - 2*x - x^2 + x^3.
MPR2(7, x) = (x - (-2 + z^2))*(x - (-2 + (-1 - z + z^2)^2))*
(x - (-2 + (2 - z^2)^2)), with z = rho(7). Expanded and reduced with C(7, z) = 0 this becomes finally MPR2(7, x) = -1 - 2*x + x^2 + x^3.
MPR2(7, x) = -C(7, -x). - Wolfdieter Lang, Apr 12 2018
MATHEMATICA
ro[n_] := (MPR2 = CoefficientList[p = MinimalPolynomial[2*Cos[2*(Pi/n)], x], x]; MPR2); Flatten[Table[ro[n], {n, 30}]] (* Jianing Song, Jul 09 2019 *)
CROSSREFS
Cf. A023022 (degree), A055034, A187360 (C polynomials).
Cf. A181877, A181875/A181876. - Wolfdieter Lang, Nov 29 2013
Cf. A065941.
Cf. A003558.
KEYWORD
sign,tabf,easy
AUTHOR
Wolfdieter Lang, Nov 28 2013
STATUS
approved

Search completed in 0.023 seconds