[go: up one dir, main page]

login
Search: a188653 -id:a188653
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 2*n^2 - 1.
+10
91
-1, 1, 7, 17, 31, 49, 71, 97, 127, 161, 199, 241, 287, 337, 391, 449, 511, 577, 647, 721, 799, 881, 967, 1057, 1151, 1249, 1351, 1457, 1567, 1681, 1799, 1921, 2047, 2177, 2311, 2449, 2591, 2737, 2887, 3041, 3199, 3361, 3527, 3697, 3871, 4049, 4231, 4417, 4607, 4801
OFFSET
0,3
COMMENTS
Image of squares (A000290) under "little Hankel" transform that sends [c_0, c_1, ...] to [d_0, d_1, ...] where d_n = c_n^2 - c_{n+1}*c_{n-1}. - Henry Bottomley, Dec 12 2000
Surround numbers of an n X n square. - Jason Earls, Apr 16 2001
Numbers n such that 2*n + 2 is a perfect square. - Cino Hilliard, Dec 18 2003, Juri-Stepan Gerasimov, Apr 09 2016
The sums of the consecutive integer sequences 2n^2 to 2(n+1)^2-1 are cubes, as 2n^2 + ... + 2(n+1)^2-1 = (1/2)(2(n+1)^2 - 1 - 2n^2 + 1)(2(n+1)^2 - 1 + 2n^2) = (2n+1)^3. E.g., 2+3+4+5+6+7 = 27 = 3^3, then 8+9+10+...+17 = 125 = 5^3. - Andras Erszegi (erszegi.andras(AT)chello.hu), Apr 29 2005
X values (other than 0) of solutions to the equation 2*X^3 + 2*X^2 = Y^2. To find Y values: b(n) = 2n*(2*n^2 - 1). - Mohamed Bouhamida, Nov 06 2007
Average of the squares of two consecutive terms is also a square. In fact: (2*n^2 - 1)^2 + (2*(n+1)^2 - 1)^2 = 2*(2*n^2 + 2*n + 1)^2. - Matias Saucedo (solomatias(AT)yahoo.com.ar), Aug 18 2008
Equals row sums of triangle A143593 and binomial transform of [1, 6, 4, 0, 0, 0, ...] with n > 1. - Gary W. Adamson, Aug 26 2008
Start a spiral of square tiles. Trivially the first tile fits in a 1 X 1 square. 7 tiles fit in a 3 X 3 square, 17 tiles fit in a 5 X 5 square and so on. - Juhani Heino, Dec 13 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-2, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n) = coeff(charpoly(A,x),x^(n-2)). - Milan Janjic, Jan 26 2010
For each n > 0, the recursive series, formula S(b) = 6*S(b-1) - S(b-2) - 2*a(n) with S(0) = 4n^2-4n+1 and S(1) = 2n^2, has the property that every even term is a perfect square and every odd term is twice a perfect square. - Kenneth J Ramsey, Jul 18 2010
Fourth diagonal of A154685 for n > 2. - Vincenzo Librandi, Aug 07 2010
First integer of (2*n)^2 consecutive integers, where the last integer is 3 times the first + 1. As example, n = 2: term = 7; (2*n)^2 = 16; 7, 8, 9, ..., 20, 21, 22: 7*3 + 1 = 22. - Denis Borris, Nov 18 2012
Chebyshev polynomial of the first kind T(2,n). - Vincenzo Librandi, May 30 2014
For n > 0, number of possible positions of a 1 X 2 rectangle in a (n+1) X (n+2) rectangular integer lattice. - Andres Cicuttin, Apr 07 2016
This sequence also represents the best solution for Ripà's n_1 X n_2 X n_3 dots problem, for any 0 < n_1 = n_2 < n_3 = floor((3/2)*(n_1 - 1)) + 1. - Marco Ripà, Jul 23 2018
LINKS
Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Classes of Gap Balancing Numbers, arXiv:1810.07895 [math.NT], 2018.
Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq., Vol. 13 (2010), Article # 10.7.8.
Mitch Phillipson, Manda Riehl, and Tristan Williams, Enumeration of Wilf classes in Sn ~ Cr for two patterns of length 3, PU. M. A., Vol. 21, No. 2 (2010), pp. 321-338.
Marco Ripà, The rectangular spiral or the n1 X n2 X ... X nk Points Problem , Notes on Number Theory and Discrete Mathematics, Vol. 20, No. 1 (2014), pp. 59-71.
FORMULA
G.f.: (-1 + 4*x + x^2)/(1-x)^3. - Henry Bottomley, Dec 12 2000
a(n) = A119258(n+1,2) for n > 0. - Reinhard Zumkeller, May 11 2006
From Doug Bell, Mar 08 2009: (Start)
a(0) = -1,
a(n) = sqrt(A001844(n)^2 - A069074(n-1)),
a(n+1) = sqrt(A001844(n)^2 + A069074(n-1)) = sqrt(a(n)^2 + A069074(n-1)*2). (End)
a(n) + a(n+1) + 1 = (2n+1)^2. - Doug Bell, Mar 09 2009
a(n) = a(n-1) + 4*n - 2 (with a(0)=-1). - Vincenzo Librandi, Dec 25 2010
a(n) = A188653(2*n) for n > 0. - Reinhard Zumkeller, Apr 13 2011
a(n) = A162610(2*n-1,n) for n > 0. - Reinhard Zumkeller, Jan 19 2013
a(n) = Sum_{k=0..2} ( (C(n+k,3)-(C(n+k-1,3))*(C(n+k,3)+ C(n+k+1,3)) ) - (C(n+2,3)-C(n-1,3))*(C(n,3)+C(n+3,3)), for n > 3. - J. M. Bergot, Jun 16 2014
a(n) = j^2 + k^2 - 2 or 2*j*k if n >= 2 and j = n + sqrt(2)/2 and k = n - sqrt(2)/2. - Avi Friedlich, Mar 30 2015
a(n) = A002593(n)/n^2. - Bruce J. Nicholson, Apr 03 2017
a(n) = A000384(n) + n - 1. - Bruce J. Nicholson, Nov 12 2017
a(n)*a(n+k) + 2k^2 = m^2 (a perfect square), m = a(n) + (2n*k), for n>=1. - Ezhilarasu Velayutham, May 13 2019
From Amiram Eldar, Aug 10 2020: (Start)
Sum_{n>=1} 1/a(n) = 1/2 - sqrt(2)*Pi*cot(Pi/sqrt(2))/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2)*Pi*csc(Pi/sqrt(2))/4 - 1/2. (End)
From Amiram Eldar, Feb 04 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(2))*csc(Pi/sqrt(2)).
Product_{n>=2} (1 - 1/a(n)) = (Pi/(4*sqrt(2)))*csc(Pi/sqrt(2)). (End)
a(n) = A003215(n) - A000217(n-2)*2. - Leo Tavares, Jun 29 2021
Let T(n) = n*(n+1)/2. Then a(n)^2 = T(2n-2)*T(2n+1) + n^2. - Charlie Marion, Feb 12 2023
E.g.f.: exp(x)*(2*x^2 + 2*x - 1). - Stefano Spezia, Jul 08 2023
EXAMPLE
a(0) = 0^2-1*1 = -1, a(1) = 1^2 - 4*0 = 1, a(2) = 2^2 - 9*1 = 7, etc.
a(4) = 31 = (1, 3, 3, 1) dot (1, 6, 4, 0) = (1 + 18 + 12 + 0). - Gary W. Adamson, Aug 29 2008
MAPLE
A056220:=n->2*n^2-1; seq(A056220(n), n=0..50); # Wesley Ivan Hurt, Jun 16 2014
MATHEMATICA
Array[2 #^2 - 1 &, 50, 0] (* Robert G. Wilson v, Jul 23 2018 *)
CoefficientList[Series[(x^2 +4x -1)/(1-x)^3, {x, 0, 50}], x] (* or *)
LinearRecurrence[{3, -3, 1}, {-1, 1, 7}, 51] (* Robert G. Wilson v, Jul 24 2018 *)
PROG
(PARI) a(n)=2*n^2-1;
(Magma) [2*n^2-1 : n in [0..50]]; // Vincenzo Librandi, May 30 2014
(GAP) List([0..50], n-> 2*n^2-1); # Muniru A Asiru, Jul 24 2018
(Sage) [2*n^2-1 for n in (0..50)] # G. C. Greubel, Jul 07 2019
CROSSREFS
Cf. A066049 (indices of prime terms)
Column 2 of array A188644 (starting at offset 1).
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Aug 06 2000
STATUS
approved
a(n) = 2*n^2 + 2*n - 1.
+10
29
-1, 3, 11, 23, 39, 59, 83, 111, 143, 179, 219, 263, 311, 363, 419, 479, 543, 611, 683, 759, 839, 923, 1011, 1103, 1199, 1299, 1403, 1511, 1623, 1739, 1859, 1983, 2111, 2243, 2379, 2519, 2663, 2811, 2963, 3119, 3279, 3443, 3611, 3783, 3959, 4139, 4323, 4511, 4703, 4899, 5099
OFFSET
0,2
COMMENTS
Essentially the same as A132209.
From Vincenzo Librandi, Nov 25 2010: (Start)
Numbers k such that 2*k + 3 is a square.
First diagonal of A144562. (End)
The terms a(n) give the values for c of indefinite binary quadratic forms [a, b, c] = [2, 4n+2, a(n)] of discriminant D = 12, where a and c can be switched. The positive numbers represented by these forms are given in A084917. - Klaus Purath, Aug 31 2023
FORMULA
a(n) = a(n-1) + 4*n.
From Paul Barry, Nov 03 2009: (Start)
G.f.: (1 - 6*x + x^2)/(1-x)^3.
a(n) = 4*C(n+1,2) - 1. (End)
a(n) = -A188653(2*n+1). - Reinhard Zumkeller, Apr 13 2011
a(n) = 3*( Sum_{k=1..n} k^5 )/( Sum_{k=1..n} k^3 ), n > 0. - Gary Detlefs, Oct 18 2011
a(n) = (A005408(n)^2 - 3)/2. - Zhandos Mambetaliyev, Feb 11 2017
E.g.f.: (-1 + 4*x + 2*x^2)*exp(x). - G. C. Greubel, Mar 01 2021
From Leo Tavares, Nov 22 2021: (Start)
a(n) = 2*A005563(n) - A005408(n). See Hexagonic Diamonds illustration.
a(n) = A016945(n-1) + A001105(n-1). See Hexagonic Rectangles illustration.
a(n) = A004767(n-1) + A046092(n-1). See Hexagonic Crosses illustration.
a(n) = A002378(n) + A028387(n-1). See Hexagonic Columns illustration. (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Dec 03 2021
Sum_{n>=0} 1/a(n) = tan(sqrt(3)*Pi/2)*Pi/(2*sqrt(3)). - Amiram Eldar, Sep 16 2022
MAPLE
A142463:= n-> 2*n^2 +2*n -1; seq(A142463(n), n=0..50); # G. C. Greubel, Mar 01 2021
MATHEMATICA
Array[ -#*(2-#*2)-1&, 5!, 1] (* Vladimir Joseph Stephan Orlovsky, Dec 21 2008 *)
Table[2n^2+2n-1, {n, 0, 50}] (* Harvey P. Dale, Feb 29 2024 *)
PROG
(Magma) [2*n^2+2*n-1: n in [0..100]]
(PARI) a(n)=2*n^2+2*n-1 \\ Charles R Greathouse IV, Sep 24 2015
(Sage) [2*n^2 +2*n -1 for n in (0..50)] # G. C. Greubel, Mar 01 2021
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Sep 19 2008
EXTENSIONS
Edited by the Associate Editors of the OEIS, Sep 02 2009
STATUS
approved
n followed by n^2.
+10
25
1, 1, 2, 4, 3, 9, 4, 16, 5, 25, 6, 36, 7, 49, 8, 64, 9, 81, 10, 100, 11, 121, 12, 144, 13, 169, 14, 196, 15, 225, 16, 256, 17, 289, 18, 324, 19, 361, 20, 400, 21, 441, 22, 484, 23, 529, 24, 576, 25, 625, 26, 676, 27, 729, 28, 784, 29, 841, 30, 900, 31, 961, 32, 1024, 33, 1089, 34, 1156, 35, 1225, 36, 1296
OFFSET
1,3
COMMENTS
Eigensequence of a triangle with nonnegative integers interlaced with zeros (1, 0, 2, 0, 3, ...) as the right and left borders, with the rest zeros. - Gary W. Adamson, Aug 01 2016
FORMULA
a(n) = ((((-1)^(n+1))+1)/4)(n+1) - ((((-1)^(n+1))-1)/8)n^2 - Sam Alexander
G.f.: (1+x-x^2+x^3)/((1-x)^3(1+x)^3).
a(n) = if(n mod 2, (n+1)/2, (n/2)^2). - Gerald Hillier, Sep 25 2008
a(n) = floor((n+1) / 2) ^ (2 - n mod 2). - Reinhard Zumkeller, Aug 15 2011
E.g.f.: (x + 2)*(sinh(x) + x*cosh(x))/4. - Ilya Gutkovskiy, Aug 02 2016
EXAMPLE
G.f. = x + x^2 + 2*x^3 + 4*x^4 + 3*x^5 + 9*x^6 + 4*x^7 + 16*x^8 + ...
MAPLE
seq(seq(n^k, k=1..2), n=1..36); # Zerinvary Lajos, Jun 29 2007
MATHEMATICA
Array[{#, #^2} &, 36, 0] // Flatten
Riffle[Range[40], Range[40]^2] (* Bruno Berselli, Jul 15 2013 *)
a[ n_] := If[ OddQ @ n, (n + 1) / 2, n^2 / 4]; (* Michael Somos, May 28 2014 *)
PROG
(Magma) &cat[ [ n, n^2 ]: n in [1..36] ]; // Klaus Brockhaus, Apr 20 2009
(Haskell)
a000463 n = a000463_list !! (n-1)
a000463_list = concatMap (\x -> [x, x^2]) [1..]
-- Reinhard Zumkeller, Apr 13 2011
(PARI) {a(n) = if( n%2, (n + 1) / 2, n^2 / 4)}; /* Michael Somos, May 28 2014 */
CROSSREFS
Cf. A188652 (first differences), A188653 (second differences), A159693 (partial sums), A000290 (squares).
KEYWORD
nonn,easy,look
EXTENSIONS
Square of 14 corrected by Sean A. Irvine, Oct 25 2010
STATUS
approved
a(n) = floor(n^2/2) - 1.
+10
22
1, 3, 7, 11, 17, 23, 31, 39, 49, 59, 71, 83, 97, 111, 127, 143, 161, 179, 199, 219, 241, 263, 287, 311, 337, 363, 391, 419, 449, 479, 511, 543, 577, 611, 647, 683, 721, 759, 799, 839, 881, 923, 967, 1011, 1057, 1103, 1151, 1199, 1249, 1299, 1351, 1403
OFFSET
2,2
COMMENTS
Define the organization number of a permutation pi_1, pi_2, ..., pi_n to be the following. Start at 1, count the steps to reach 2, then the steps to reach 3, etc. Add them up. Then the maximal value of the organization number of any permutation of [1..n] for n = 0, 1, 2, 3, ... is given by 0, 1, 3, 7, 11, 17, 23, ... (this sequence). This was established by Graham Cormode (graham(AT)research.att.com), Aug 17 2006, see link below, answering a question raised by Tom Young (mcgreg265(AT)msn.com) and Barry Cipra, Aug 15 2006
From Dmitry Kamenetsky, Nov 29 2006: (Start)
This is the length of the longest non-self-intersecting spiral drawn on an n X n grid. E.g., for n=5 the spiral has length 17:
1 0 1 1 1
1 0 1 0 1
1 0 1 0 1
1 0 0 0 1
1 1 1 1 1 (End)
It appears that a(n+1) is the maximum number of consecutive integers (beginning with 1) that can be placed, one after another, on an n-peg Towers of Hanoi, such that the sum of any two consecutive integers on any peg is a square. See the problem: http://online-judge.uva.es/p/v102/10276.html. - Ashutosh Mehra, Dec 06 2008
a(n) = number of (w,x,y) with all terms in {0,...,n} and w = |x+y-w|. - Clark Kimberling, Jun 11 2012
The same sequence also represents the solution to the "pigeons problem": maximal value of the sum of the lengths of n-1 line segments (connected at their end-points) required to pass through n trail dots, with unit distance between adjacent points, visiting all of them without overlaping two or more segments. In this case, a(0)=0, a(1)=1, a(2)=3, and so on. - Marco Ripà, Jan 28 2014
Also the longest path length in the n X n white bishop graph. - Eric W. Weisstein, Mar 27 2018
a(n) is the number of right triangles with sides n*(h-floor(h)), floor(h) and h, where h is the hypotenuse. - Andrzej Kukla, Apr 14 2021
LINKS
Laurent Bulteau, Samuele Giraudo and Stéphane Vialette, Disorders and permutations , 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021). Article No. 18; pp. 18:1-18:14.
Eric Weisstein's World of Mathematics, Longest Path Problem.
Eric Weisstein's World of Mathematics, White Bishop Graph.
FORMULA
a(2)=1; for n > 2, a(n) = a(n-1) + n - 1 + (n-1 mod 2). - Benoit Cloitre, Jan 12 2003
a(n) = T(n-1) + floor(n/2) - 1 = T(n) - floor((n+3)/2), where T(n) is the n-th triangular number (A000217). - Robert G. Wilson v, Aug 31 2006
Equals (n-1)-th row sums of triangles A134151 and A135152. Also, = binomial transform of [1, 2, 2, -2, 4, -8, 16, -32, ...]. - Gary W. Adamson, Nov 21 2007
G.f.: x^2*(1+x+x^2-x^3)/((1-x)^3*(1+x)). - R. J. Mathar, Sep 09 2008
a(n) = floor((n^2 + 4*n + 2)/2). - Gary Detlefs, Feb 10 2010
a(n) = abs(A188653(n)). - Reinhard Zumkeller, Apr 13 2011
a(n) = (2*n^2 + (-1)^n - 5)/4. - Bruno Berselli, Sep 14 2011
a(n) = a(-n) = A007590(n) - 1.
a(n) = A080827(n) - 2. - Kevin Ryde, Aug 24 2013
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), n > 4. - Wesley Ivan Hurt, Aug 06 2015
a(n) = A000217(n-1) + A004526(n-2), for n > 1. - J. Stauduhar, Oct 20 2017
From Guenther Schrack, May 12 2018: (Start)
Set a(0) = a(1) = -1, a(n) = a(n-2) + 2*n - 2 for n > 1.
a(n) = A000982(n-1) + n - 2 for n > 1.
a(n) = 2*A033683(n) - 3 for n > 1.
a(n) = A061925(n-1) + n - 3 for n > 1.
a(n) = A074148(n) - n - 1 for n > 1.
a(n) = A105343(n-1) + n - 4 for n > 1.
a(n) = A116940(n-1) - n for n > 1.
a(n) = A179207(n) - n + 1 for n > 1.
a(n) = A183575(n-2) + 1 for n > 2.
a(n) = A265284(n-1) - 2*n + 1 for n > 1.
a(n) = 2*A290743(n) - 5 for n > 1. (End)
E.g.f.: 1 + x + ((x^2 + x - 2)*cosh(x) + (x^2 + x - 3)*sinh(x))/2. - Stefano Spezia, May 06 2021
Sum_{n>=2} 1/a(n) = 3/2 + tan(sqrt(3)*Pi/2)*Pi/(2*sqrt(3)) - cot(Pi/sqrt(2))*Pi/(2*sqrt(2)). - Amiram Eldar, Sep 15 2022
EXAMPLE
x^2 + 3*x^3 + 7*x^4 + 11*x^5 + 17*x^6 + 23*x^7 + 31*x^8 + 39*x^9 + 49*x^10 + ...
MAPLE
seq(floor((n^2+4*n+2)/2), n=0..20) # Gary Detlefs, Feb 10 2010
MATHEMATICA
Table[Floor[n^2/2] - 1, {n, 2, 60}] (* Robert G. Wilson v, Aug 31 2006 *)
LinearRecurrence[{2, 0, -2, 1}, {1, 3, 7, 11}, 60] (* Harvey P. Dale, Jan 16 2015 *)
Floor[Range[2, 20]^2/2] - 1 (* Eric W. Weisstein, Mar 27 2018 *)
Table[((-1)^n + 2 n^2 - 5)/4, {n, 2, 20}] (* Eric W. Weisstein, Mar 27 2018 *)
CoefficientList[Series[(-1 - x - x^2 + x^3)/((-1 + x)^3 (1 + x)), {x, 0, 20}], x] (* Eric W. Weisstein, Mar 27 2018 *)
PROG
(PARI) a(n) = n^2\2 - 1
(Magma) [Floor(n^2/2)-1 : n in [2..100]]; // Wesley Ivan Hurt, Aug 06 2015
CROSSREFS
Complement of A047839. First difference is A052928.
Partial sums: A213759(n-1) for n > 1. - Guenther Schrack, May 12 2018
KEYWORD
nonn,easy
AUTHOR
Michael Somos, May 07 1999
EXTENSIONS
Edited by Charles R Greathouse IV, Apr 23 2010
STATUS
approved
First differences of A000463.
+10
5
0, 1, 2, -1, 6, -5, 12, -11, 20, -19, 30, -29, 42, -41, 56, -55, 72, -71, 90, -89, 110, -109, 132, -131, 156, -155, 182, -181, 210, -209, 240, -239, 272, -271, 306, -305, 342, -341, 380, -379, 420, -419, 462, -461, 506, -505, 552, -551, 600, -599, 650, -649, 702, -701, 756, -755, 812, -811, 870, -869, 930, -929, 992, -991, 1056, -1055, 1122, -1121, 1190, -1189, 1260, -1259, 1332, -1331, 1406
OFFSET
1,3
FORMULA
a(2n) = 1 - a(2n-1), a(2n+1) = 2*n + 1 - a(2n).
a(n) = A000463(n+1) - A000463(n).
a(2n-1) = A002378(n-1), a(2n) = - A165900(n).
G.f.: -x^2*(-1-3*x+x^2+x^3) / ( (x-1)^2*(1+x)^3 ). - R. J. Mathar, Apr 14 2011
a(n) = (2*n+3-(2*n^2-2*n-5)*(-1)^n)/8. - Luce ETIENNE, Dec 18 2014
E.g.f.: ((4 + x - x^2)*cosh(x) - (1 - x - x^2)*sinh(x) - 4)/4. - Stefano Spezia, Jul 08 2023
MATHEMATICA
Differences[Flatten[Array[{#, #^2}&, 40]]] (* Harvey P. Dale, Aug 04 2012 *)
PROG
(Haskell)
a188652 n = a188652_list !! (n-1)
a188652_list = zipWith (-) (tail a000463_list) a000463_list
CROSSREFS
Cf. A188653 (first differences).
KEYWORD
sign,easy
AUTHOR
Reinhard Zumkeller, Apr 13 2011
STATUS
approved

Search completed in 0.009 seconds