[go: up one dir, main page]

login
Search: a173976 -id:a173976
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) is the smallest natural number k such that the concatenation (n+k)||k is a prime number.
+10
6
3, 1, 1, 3, 1, 1, 3, 3, 1, 9, 19, 1, 3, 1, 7, 3, 1, 1, 3, 1, 13, 17, 1, 1, 3, 1, 1, 3, 7, 1, 9, 1, 23, 3, 3, 19, 17, 7, 1, 3, 1, 1, 3, 21, 1, 11, 3, 1, 3, 7, 1, 9, 1, 7, 21, 1, 7, 3, 1, 7, 3, 1, 1, 3, 1, 17, 9, 1, 1, 3, 3, 7, 9, 1, 1, 9, 13, 7, 3, 1, 1, 3, 3, 11, 3, 7, 1, 27, 7, 1, 9, 3, 1, 9, 3, 1, 9, 1
OFFSET
1,1
COMMENTS
The last digit of a(n) must be 1, 3, 7 or 9.
If n and 10^d+1 are not coprime, then a(n) cannot have d digits. - Robert Israel, Sep 16 2024
REFERENCES
Theo Kempermann, Zahlentheoretische Kostproben, Harri Deutsch, 2. aktualisierte Auflage 2005.
Helmut Kracke, Mathe-musische Knobelisken, Dümmler Bonn, 2. Auflage 1983.
Hugo Steinhaus, Studentenfutter, Urania-Verlag Leipzig-Jena-Berlin, 1991.
LINKS
FORMULA
a(n) = 1 for n > 1 in A126785.
EXAMPLE
43 = prime(14) = (3+1)||3, a(1) = 3
31 = prime(11) = (1+2)||1, a(2) = 1
41 = prime(13) = (1+3)||1, a(3) = 1
3413 = prime(480) = (13+21)||13, a(21) = 13
11527 = prime(1390) = (27+88)||27, a(88) = 27
Note cases where consecutive values of n give consecutive primes:
n=17: 181 = prime(42) = (1+17)||1, n=18: 191 = prime(43) = (1+18)||1
k=41: 421 = prime(82) = (1+41)||1, n=42: 431 = prime(83) = (1+42)||1
... are there infinitely many of such?
a(11) = 19, 3019 is a resulting "candidate" for n = 301 - 9 = 292, but a(292) = 3 gives 2953 = prime(425)
First twice resulting prime is 5623 = prime(739) = (23+33)||23 = 5623 = (559+3)||3
MAPLE
tcat:= proc(a, b) a*10^(1+ilog10(b))+b end proc:
f:= proc(n) local k, d;
for d from 1 do
if igcd(n, 10^d+1) > 1 then next fi;
for k from 10^(d-1)+`if`(d=1, 0, 1) to 10^d by 2 do
if isprime(tcat(n+k, k)) then return k fi
od od
end proc:
map(f, [$1..100]); # Robert Israel, Sep 16 2024
PROG
(PARI) a(n) = my(k=1); while (!isprime(eval(concat(Str(n+k), Str(k)))), k++); k; \\ Michel Marcus, Sep 17 2024
(Python)
from itertools import count
from math import gcd
from sympy import isprime
def A174414(n):
for l in count(1):
if gcd(n, (m:=10**l)+1)==1:
r = m//10
a = m*(n+r)+r
for k in range(r, m):
if isprime(a):
return k
a += m+1 # Chai Wah Wu, Sep 18 2024
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Mar 19 2010
EXTENSIONS
Edited and corrected by Robert Israel, Sep 16 2024
STATUS
approved
a(k) is the least n such that the concatenation (n - k)"n is a prime number, for k >= 0.
+10
1
1, 3, 3, 7, 7, 17, 7, 9, 9, 11, 13, 17, 13, 19, 17, 19, 21, 21, 23, 27, 27, 23, 43, 33, 41, 27, 27, 29, 31, 33, 31, 33, 39, 47, 37, 39, 37, 39, 39, 41, 51, 47, 47, 61, 47, 49, 49, 53, 49, 51, 51, 59, 57, 57, 61, 57, 57, 61, 63, 63, 71, 63, 63, 67, 67, 77, 67, 69, 77, 71, 73, 77
OFFSET
0,2
COMMENTS
See comments and references for A174414.
10^d*(n - k) + n has to be prime for the least d-digit n > k (k >= 0).
For (n - k)"n to be a prime, n must end in the digit 1, 3, 7, or 9.
Conjecture: a(k) = a(k+1) for an infinite number of k's.
As n > k, the number of a(k) is finite, and can be easily bounded from above.
1, 11, ... appear only once in the sequence; 3, 9, 13, 19, 21, 23, ... appear twice; 7, 17, ... three times; and so on.
Does each n that ends in the digit 1, 3, 7, or 9 appear in this sequence?
Note this interesting observation that first occurs for k = 84: 9291013 = prime(620602) = (1013 - 84)"1013, a(84) = 1013. A second example is: 9381037 = prime(626219) = (1037 - 99)"1037.
Let k be a multiple of 7, 11, or 13, then no 3-digit n exists such that (n - k)"n is prime. Proof: 10^3*(n - k) + n = n * (10^3+1) - k * 10^3 = 7 * 11 * 13 * n - k * 10^3 is not prime, as k is a multiple of 7, 11, or 13.
Similar for k-digit n with given divisors and k > 3: 10^4 + 1 = 73 * 137, 10^5 + 1 = 11 * 9091.
EXAMPLE
11 = prime(5) = (1 - 0)"1, thus a(0) = 1.
23 = prime(9) = (3 - 1)"3, thus a(1) = 3.
13 = prime(6) = (3 - 2)"3, thus a(2) = 3.
139 = prime(34) = (39 - 38)"39, thus a(38) = 39.
9109 = prime(1130) = (109 - 100)"109, thus a(100) = 109.
MAPLE
mycat := (k, n) -> parse(cat(convert(n - k, string), convert(n, string))):
sol := (k, n) -> isprime(mycat(k, n)):
a := proc(k) local n; for n from k + 1 while not sol(k, n) do od; n end:
seq(a(k), k = 0..71); # Peter Luschny, Sep 20 2024
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Mar 23 2010
EXTENSIONS
Edited, offset set to 0 and a(71) corrected by Peter Luschny, Sep 20 2024
STATUS
approved
Numbers n such that (n+2)//n - (n+1) is prime, where // represents the concatenation of decimals.
+10
0
0, 1, 4, 6, 7, 9, 12, 13, 15, 18, 19, 22, 25, 28, 31, 33, 39, 46, 48, 49, 52, 60, 61, 64, 67, 73, 75, 84, 85, 88, 90, 99, 100, 103, 106, 132, 133, 135, 136, 138, 142, 156, 160, 163, 171, 178, 181, 183, 187, 190, 198, 201, 202, 211, 220, 222, 229, 238, 241, 246, 252
OFFSET
1,3
COMMENTS
If n is a k-digit number, then we demand that p = (n+2) * 10^k + n - (n+1) is a prime number, obviously of the form p = (n+2) * 10^k - 1, so the decimal representation of p is n+1 followed by k times the digit 9.
The sequence is infinite, proof with Dirichlet's prime number (in arithmetic progressions) theorem.
Note that numbers of the form (n+2)//n + (n+1) are multiples of 3 and do not generate primes.
EXAMPLE
2//0 - 1 = 20 - 1 = 19 = prime(8), 0 is first term;
3//1 - 2 = 31 - 2 = 29 = prime(10), 1 is 2nd term;
6//4 - 5 = 64 - 5 = 59 = prime(17), 4 is 3rd term.
MATHEMATICA
n2ncQ[n_]:=PrimeQ[FromDigits[Join[IntegerDigits[n+2], IntegerDigits[ n]]]- n-1]; Select[Range[0, 300], n2ncQ] (* Harvey P. Dale, Feb 24 2011 *)
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), May 11 2010
STATUS
approved

Search completed in 0.008 seconds