OFFSET
1,1
COMMENTS
The last digit of a(n) must be 1, 3, 7 or 9.
If n and 10^d+1 are not coprime, then a(n) cannot have d digits. - Robert Israel, Sep 16 2024
REFERENCES
Theo Kempermann, Zahlentheoretische Kostproben, Harri Deutsch, 2. aktualisierte Auflage 2005.
Helmut Kracke, Mathe-musische Knobelisken, Dümmler Bonn, 2. Auflage 1983.
Hugo Steinhaus, Studentenfutter, Urania-Verlag Leipzig-Jena-Berlin, 1991.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = 1 for n > 1 in A126785.
EXAMPLE
43 = prime(14) = (3+1)||3, a(1) = 3
31 = prime(11) = (1+2)||1, a(2) = 1
41 = prime(13) = (1+3)||1, a(3) = 1
3413 = prime(480) = (13+21)||13, a(21) = 13
11527 = prime(1390) = (27+88)||27, a(88) = 27
Note cases where consecutive values of n give consecutive primes:
n=17: 181 = prime(42) = (1+17)||1, n=18: 191 = prime(43) = (1+18)||1
k=41: 421 = prime(82) = (1+41)||1, n=42: 431 = prime(83) = (1+42)||1
... are there infinitely many of such?
a(11) = 19, 3019 is a resulting "candidate" for n = 301 - 9 = 292, but a(292) = 3 gives 2953 = prime(425)
First twice resulting prime is 5623 = prime(739) = (23+33)||23 = 5623 = (559+3)||3
MAPLE
tcat:= proc(a, b) a*10^(1+ilog10(b))+b end proc:
f:= proc(n) local k, d;
for d from 1 do
if igcd(n, 10^d+1) > 1 then next fi;
for k from 10^(d-1)+`if`(d=1, 0, 1) to 10^d by 2 do
if isprime(tcat(n+k, k)) then return k fi
od od
end proc:
map(f, [$1..100]); # Robert Israel, Sep 16 2024
PROG
(PARI) a(n) = my(k=1); while (!isprime(eval(concat(Str(n+k), Str(k)))), k++); k; \\ Michel Marcus, Sep 17 2024
(Python)
from itertools import count
from math import gcd
from sympy import isprime
def A174414(n):
for l in count(1):
if gcd(n, (m:=10**l)+1)==1:
r = m//10
a = m*(n+r)+r
for k in range(r, m):
if isprime(a):
return k
a += m+1 # Chai Wah Wu, Sep 18 2024
KEYWORD
base,nonn
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Mar 19 2010
EXTENSIONS
Edited and corrected by Robert Israel, Sep 16 2024
STATUS
approved