[go: up one dir, main page]

login
Search: a173755 -id:a173755
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = denominator of binomial(2n,n)/4^n.
+10
99
1, 2, 8, 16, 128, 256, 1024, 2048, 32768, 65536, 262144, 524288, 4194304, 8388608, 33554432, 67108864, 2147483648, 4294967296, 17179869184, 34359738368, 274877906944, 549755813888, 2199023255552, 4398046511104, 70368744177664, 140737488355328, 562949953421312
OFFSET
0,2
COMMENTS
Also denominator of e(0,n) (see Maple line). - N. J. A. Sloane, Feb 16 2002
Denominator of coefficient of x^n in (1+x)^(k/2) or (1-x)^(k/2) for any odd integer k. - Michael Somos, Sep 15 2004
Numerator of binomial(2n,n)/4^n = A001790(n).
Denominators in expansion of sqrt(c(x)), c(x) the g.f. of A000108. - Paul Barry, Jul 12 2005
Denominator of 2^m*Gamma(m+3/4)/(Gamma(3/4)*Gamma(m+1)). - Stephen Crowley, Mar 19 2007
Denominator in expansion of Jacobi_P(n,1/2,1/2,x). - Paul Barry, Feb 13 2008
This sequence equals the denominators of the coefficients of the series expansions of (1-x)^((-1-2*n)/2) for all integer values of n; see A161198 for detailed information. - Johannes W. Meijer, Jun 08 2009
Numerators of binomial transform of 1, -1/3, 1/5, -1/7, 1/9, ... (Madhava-Gregory-Leibniz series for Pi/4): 1, 2/3, 8/15, 16/35, 128/315, 256/693, .... First differences are -1/3, -2/15, -8/105, -16/315, -128/3465, -256/9009, ... which contain the same numerators, negated. The second differences are 1/5, 2/35, 8/315, 16/1155, 128/15015, ... again with the same numerators. Second column: 2/3, -2/15, 2/35, -2/63, 2/99; see A000466(n+1) = A005563(2n+1). Third column: 8*(1/15, -1/105, 1/315, -1/693, ...), see A061550. See A173294 and A173296. - Paul Curtz, Feb 16 2010
0, 1, 5/3, 11/5, 93/35, 193/63, 793/231, ... = (0 followed by A120778(n))/A001790(n) is the binomial transform of 0, 1, -1/3, 1/5, -1/7, 1/9, ... . See A173755 and formula below. - Paul Curtz, Mar 13 2013
Numerator of power series of arcsin(x)/sqrt(1-x^2), centered at x=0. - John Molokach, Aug 02 2013
Denominators of coefficients in the Taylor series expansion of Sum_{n>=0} exp((-1)^n * Euler(2*n)*x^n/(2*n)), see A280442 for the numerators. - Johannes W. Meijer, Jan 05 2017
Denominators of Pochhammer(n+1, -1/2)/sqrt(Pi). - Adam Hugill, Sep 11 2022
a(n) is the denominator of the mean value of cos(x)^(2*n) from x = 0 to 2*Pi. - Stefano Spezia, May 16 2023
4^n/binomial(2n,n) is the expected value of the number of socks that are randomly drawn out of a drawer of n different pairs of socks, when one sock is drawn out at a time until a matching pair is found (King and King, 2005). - Amiram Eldar, Jul 02 2023
a(n) is the denominator of (1/Pi) * Integral_{x=-oo..+oo} sech(x)^(2*n+1) dx. The corresponding numerator is A001790(n). - Mohammed Yaseen, Jul 29 2023
a(n) is the numerator of Integral_{x=0..Pi/2} sin(x)^(2*n+1) dx. The corresponding denominator is A001803(n). - Mohammed Yaseen, Sep 22 2023
REFERENCES
W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd ed. New York: Wiley, 1968; Chap. III, Eq. 4.1.
B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 513, Eq. (7.282).
Eli Maor, e: The Story of a Number. Princeton, New Jersey: Princeton University Press (1994), p. 72.
LINKS
C. M. Bender and K. A. Milton, Continued fraction as a discrete nonlinear transform, arXiv:hep-th/9304062, 1993. See V_n with N=1.
Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
Jeremy and Patricia King, Problem 89.G, Problem Corner, The Mathematical Gazette, Vol. 90, No. 515 (2005), p. 314; Solution, ibid., Vol. 90, No. 517 (2006), pp. 163-164.
V. H. Moll, The evaluation of integrals: a personal story, Notices Amer. Math. Soc., 49 (No. 3, March 2002), 311-317.
Eric Weisstein's World of Mathematics, Binomial Series.
Eric Weisstein's World of Mathematics, Heads-Minus-Tails Distribution.
Eric Weisstein's World of Mathematics, Legendre Polynomial.
Eric Weisstein's World of Mathematics, Random Matrix.
Eric Weisstein's World of Mathematics, Random Walk 1-Dimensional.
FORMULA
a(n) = 2^(2*n - 1 - A048881(n-1)), if n > 0.
a(n) = 2^A005187(n).
a(n) = 4^n/2^A000120(n). - Michael Somos, Sep 15 2004
a(n) = 2^A001511(n)*a(n-1) with a(0) = 1. - Johannes W. Meijer, Nov 04 2012
a(n) = denominator(binomial(-1/2,n)). - Peter Luschny, Nov 21 2012
a(n) = (0 followed by A120778(n)) + A001790(n). - Paul Curtz, Mar 13 2013
a(n) = 2^n*A060818(n). - Johannes W. Meijer, Jan 05 2017
a(n)/A001790(n) ~ sqrt(Pi*n) (King and King, 2005). - Amiram Eldar, Jul 02 2023
EXAMPLE
sqrt(1+x) = 1 + (1/2)*x - (1/8)*x^2 + (1/16)*x^3 - (5/128)*x^4 + (7/256)*x^5 - (21/1024)*x^6 + (33/2048)*x^7 + ...
binomial(2n,n)/4^n => 1, 1/2, 3/8, 5/16, 35/128, 63/256, 231/1024, 429/2048, 6435/32768, ...
The sequence e(0,n) begins 1, 3/2, 21/8, 77/16, 1155/128, 4389/256, 33649/1024, 129789/2048, 4023459/32768, ...
MAPLE
e := proc(l, m) local k; add(2^(k-2*m)*binomial(2*m-2*k, m-k)* binomial(m+k, m) *binomial(k, l), k=l..m); end: seq(denom(e(0, n)), n = 0..24);
Z[0]:=0: for k to 30 do Z[k]:=simplify(1/(2-z*Z[k-1])) od: g:=sum((Z[j]-Z[j-1]), j=1..30): gser:=series(g, z=0, 27): seq(denom(coeff(gser, z, n)), n=-1..23); # Zerinvary Lajos, May 21 2008
A046161 := proc(n) option remember: if n = 0 then 1 else 2^A001511(n) * procname(n-1) fi: end: A001511 := proc(n): padic[ordp](2*n, 2) end: seq(A046161(n), n = 0..24); # Johannes W. Meijer, Nov 04 2012
A046161 := n -> 4^n/2^add(i, i=convert(n, base, 2)):
seq(A046161(n), n=0..24); # Peter Luschny, Apr 08 2014
MATHEMATICA
a[n_, m_] := Binomial[n - m/2 + 1, n - m + 1] - Binomial[n - m/2, n - m + 1]; s[n_] := Sum[ a[n, k], {k, 0, n}]; Table [Denominator[s[n]], {n, 0, 26}] (* Michele Dondi (bik.mido(AT)tiscalinet.it), Jul 11 2002 *)
Denominator[Table[Binomial[2n, n]/4^n, {n, 0, 30}]] (* Harvey P. Dale, Oct 29 2012 *)
Table[Denominator@LegendreP[2n, 0], {n, 0, 24}] (* Andres Cicuttin, Jan 22 2018 *)
PROG
(PARI) a(n)=if(n<0, 0, denominator(binomial(2*n, n)/4^n)) /* Michael Somos, Sep 15 2004 */
(PARI) a(n)=my(s=n); while(n>>=1, s+=n); 2^s \\ Charles R Greathouse IV, Apr 07 2012
(PARI) a(n)=denominator(I^-n*pollegendre(n, I/2)) \\ Charles R Greathouse IV, Mar 18 2017
(Sage)
def A046161(n):
A005187 = lambda n: A005187(n//2) + n if n > 0 else 0
return 2^A005187(n)
[A046161(n) for n in (0..24)] # Peter Luschny, Nov 16 2012
(Maxima)
a(n) := denom(binomial(-1/2, n));
makelist(a(n), n, 0, 24); /* Peter Luschny, Nov 21 2012 */
(Magma) [Denominator(Binomial(2*n, n)/4^n): n in [0..30]]; // Vincenzo Librandi, Jul 18 2015
(Python 3.10+)
def A046161(n): return 1<<(n<<1)-n.bit_count() # Chai Wah Wu, Nov 15 2022
CROSSREFS
Cf. A161198 triangle related to the series expansions of (1-x)^((-1-2*n)/2) for all values of n.
KEYWORD
nonn,easy,nice,frac
STATUS
approved

Search completed in 0.006 seconds