[go: up one dir, main page]

login
Search: a173320 -id:a173320
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers k such that phi(tau(k)) = sopf(k).
+10
3
4, 8, 32, 1344, 2016, 2025, 2376, 3375, 3528, 4032, 4224, 4704, 4752, 5292, 5376, 5625, 6084, 6804, 7128, 9408, 9504, 10125, 10206, 10935, 12100, 12348, 12672, 16875, 16896, 20412, 21384, 23814, 26136, 28512, 29952, 30375, 31944, 32832, 42768, 46464, 48114
OFFSET
1,1
LINKS
P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1919), 75-113.
FORMULA
{k: A163109(k) = A008472(k)}.
EXAMPLE
4 is in the sequence because tau(4) = 3, phi(3) = 2 and sopf(4) = 2.
8 is in the sequence because tau(8) = 4, phi(4) = 2 and sopf(8) = 2.
MAPLE
A008472 := proc(n) add(p, p= numtheory[factorset](n)) ; end proc:
A163109 := proc(n) numtheory[phi](numtheory[tau](n)) ; end proc:
for n from 1 to 40000 do if A008472(n) = A163109(n) then printf("%d, ", n); end if; end do: # R. J. Mathar, Sep 02 2011
MATHEMATICA
Select[Range[2, 50000], EulerPhi[DivisorSigma[0, #]]==Total[ Transpose[ FactorInteger[#]][[1]]]&] (* Harvey P. Dale, Nov 15 2013 *)
CROSSREFS
Cf. A000005 (tau), A000010 (phi), A008472 (sopf).
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 16 2010
EXTENSIONS
Corrected and edited by Michel Lagneau, Apr 25 2010
STATUS
approved
Numbers k such that sigma(tau(k)) equals the sum of distinct primes dividing k.
+10
1
3, 10, 104, 105, 175, 245, 276, 343, 414, 484, 532, 798, 1190, 1430, 1776, 1862, 3105, 3174, 3712, 4394, 5049, 5054, 5104, 5994, 6256, 6360, 6975, 8125, 8480, 8625, 9472, 9648, 10600, 12408, 12789, 14310, 16544, 16625, 16728, 19908, 20295, 21056, 21708
OFFSET
1,1
COMMENTS
sigma(tau(k)) = A000203(A000005(k)) = A062069(k).
From Robert Israel, Nov 07 2016: (Start)
If m is in A023194, sigma(m)^(m-1) is in the sequence.
If p and q are distinct primes, and r and s are distinct primes such that r+s = (p+1)(q+1), then r^(p-1)*s^(q-1) is in the sequence.
(End)
LINKS
FORMULA
{k: A062069(k) = A008472(k)}.
EXAMPLE
k=3 with sigma(tau(3)) = sigma(2) = 3 = A008472(3).
k=10 with sigma(tau(10)) = sigma(4) = 7 = A008472(10).
MAPLE
with(numtheory): for n from 1 to 100000 do : t1:= ifactors(n)[2] : t2 :=sum(t1[i][1], i=1..nops(t1)):if sigma(tau(n)) = t2 then print (n): else fi : od :
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 16 2010
EXTENSIONS
"sopf" uses replaced and examples disentangled by R. J. Mathar, Feb 24 2010
STATUS
approved
Numbers n such that phi(tau(n))= rad(n)
+10
0
1, 4, 8, 32, 36, 192, 288, 768, 972, 1458, 5120, 13122, 326592, 19531250, 22588608, 46137344, 171532242
OFFSET
1,2
COMMENTS
rad(n) is the product of the primes dividing n (A007947 ) tau(n) is the number of divisors of n (A000005) phi(n): Euler totient function (A000010)
a(18) > 10^10. - Donovan Johnson, Jul 27 2011
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
LINKS
P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1919), 75-113.
W. Sierpinski, Number Of Divisors And Their Sum, Elementary theory of numbers, Warszawa, 1964.
FORMULA
n such that A163109(n)= A007947(n)
EXAMPLE
tau(8) = 4, phi(4)=2 and rad(8)=2 tau(13122) = 18, phi(18)=6 and rad(13122)=6
MAPLE
with(numtheory):for n from 1 to 1000000 do :t1:= ifactors(n)[2] : t2 :=mul(t1[i][1], i=1..nops(t1)): if phi(tau(n)) = t2 then print (n): else fi : od :
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 22 2010
EXTENSIONS
a(14)-a(17) from Donovan Johnson, Jul 27 2011
STATUS
approved

Search completed in 0.005 seconds