[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a172043 -id:a172043
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 6*n^2 + 1.
+10
9
1, 7, 25, 55, 97, 151, 217, 295, 385, 487, 601, 727, 865, 1015, 1177, 1351, 1537, 1735, 1945, 2167, 2401, 2647, 2905, 3175, 3457, 3751, 4057, 4375, 4705, 5047, 5401, 5767, 6145, 6535, 6937, 7351, 7777, 8215, 8665, 9127, 9601, 10087, 10585, 11095, 11617, 12151
OFFSET
0,2
COMMENTS
Least splitter is defined for x < y at A227631 as the least positive integer d such that x <= c/d < y for some integer c; the number c/d is called the least splitting rational of x and y. Conjecture: a(n) is the least splitter of s(n) and s(n+1), where s(n) = n*sin(1/n).
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (1 + 4*x + 7*x^2)/(1 - x)^3.
a(n) = A287326(2n, n). - Kolosov Petro, Nov 06 2017
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(6))*coth(Pi/sqrt(6)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(6))*csch(Pi/sqrt(6)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(6))*sinh(Pi/sqrt(3)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(6))*csch(Pi/sqrt(6)).(End)
From Leo Tavares, Nov 20 2021: (Start)
a(n) = A003154(n+1) - A008458(n). See Hexagonal Star Rays illustration.
a(n) = A003215(n) + A028896(n-1).
a(n) = A054554(n+1) + A046092(n).
a(n) = A080855(n) + A045943(n).
a(n) = A172043(n) + A002378(n).
a(n) = A033581(n) + 1. (End)
E.g.f.: exp(x)*(1 + 6*x + 6*x^2). - Stefano Spezia, Sep 14 2024
EXAMPLE
The first eight least splitting rationals for {n*sin(1/n), n >=1 } are these fractions: 6/7, 24/25, 54/55, 96/97, 150/151, 216/217, 294/295, 384/385.
MATHEMATICA
z = 40; r[x_, y_] := Module[{c, d}, d = NestWhile[#1 + 1 &, 1, ! (c = Ceiling[#1 x - 1]) < Ceiling[#1 y] - 1 &]; (c + 1)/d]; s[n_] := s[n] = n*Sin[1/n]; t = Table[r[s[n], s[n + 1]], {n, 1, z}] (* least splitting rationals *); fd = Denominator[t] (* Peter J. C. Moses, Jul 15 2013 *)
Array[6 #^2 + 1 &, 45] (* Michael De Vlieger, Nov 08 2017 *)
LinearRecurrence[{3, -3, 1}, {7, 25, 55}, 50] (* Harvey P. Dale, Dec 16 2017 *)
PROG
(PARI) a(n)=6*n^2+1 \\ Charles R Greathouse IV, Jun 17 2017
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 30 2013
EXTENSIONS
a(0) = 1 prepended by Robert P. P. McKone, Oct 09 2023
STATUS
approved
a(n) = ( 10*n*(n+1)+(2*n+1)*(-1)^n+7 )/8.
+10
4
1, 3, 9, 15, 27, 37, 55, 69, 93, 111, 141, 163, 199, 225, 267, 297, 345, 379, 433, 471, 531, 573, 639, 685, 757, 807, 885, 939, 1023, 1081, 1171, 1233, 1329, 1395, 1497, 1567, 1675, 1749, 1863, 1941, 2061, 2143, 2269, 2355, 2487, 2577, 2715, 2809, 2953, 3051
OFFSET
0,2
COMMENTS
From Paul Curtz, Jan 01 2020: (Start)
In the following pentagonal spiral of odd numbers
101
99 61 63
97 59 31 33 65
95 57 29 11 13 35 67
93 55 27 9 1 3 15 37 69
91 53 25 7 5 17 39 71
89 51 23 21 19 41 73
87 49 47 45 43 75
85 83 81 79 77
the terms of this sequence appear on the x axis. A062786 and A172043 are in the spiral as well. (End)
FORMULA
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Colin Barker, Sep 25 2014
G.f.: -(x^4+2*x^3+4*x^2+2*x+1) / ((x-1)^3*(x+1)^2). - Colin Barker, Sep 25 2014
From Paul Curtz, Jan 01 2020: (Start)
a(n) = 1 + 2*A085787(n).
a(n+1) = a(n-1) + A090772(n+1). (End)
E.g.f.: (1/4)*((1 + x)*(4 + 5*x)*cosh(x) + (3 + x*(11 + 5*x))*sinh(x)). - Stefano Spezia, Jan 01 2020
MAPLE
f:=n->(10*n*(n+1)+(2*n+1)*(-1)^n+7)/8;
MATHEMATICA
Table[(10 n (n + 1) + (2 n + 1) (-1)^n + 7)/8, {n, 0, 60}] (* Vincenzo Librandi, Sep 26 2014 *)
PROG
(PARI) Vec(-(x^4+2*x^3+4*x^2+2*x+1) / ((x-1)^3*(x+1)^2) + O(x^100)) \\ Colin Barker, Sep 25 2014
CROSSREFS
A diagonal of triangle in A247646.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 23 2014
EXTENSIONS
More terms from Colin Barker, Sep 25 2014
STATUS
approved
a(n) = 5*n^2 + 31*n + 1.
+10
1
1, 37, 83, 139, 205, 281, 367, 463, 569, 685, 811, 947, 1093, 1249, 1415, 1591, 1777, 1973, 2179, 2395, 2621, 2857, 3103, 3359, 3625, 3901, 4187, 4483, 4789, 5105, 5431, 5767, 6113, 6469, 6835, 7211, 7597, 7993, 8399, 8815, 9241, 9677, 10123, 10579
OFFSET
0,2
FORMULA
G.f.: (1+34*x-25*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Apr 07 2013
E.g.f.: (1 + 36*x + 5*x^2)*exp(x). - G. C. Greubel, Apr 28 2022
MATHEMATICA
CoefficientList[Series[(1 +34x -25x^2)/(1-x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, Apr 07 2013 *)
PROG
(Magma) [ 5*n^2+31*n+1: n in [0..50] ];
(PARI) a(n)=5*n^2+31*n+1 \\ Charles R Greathouse IV, Jun 17 2017
(SageMath) [((10*n+31)^2 -941)/20 for n in (0..50)] # G. C. Greubel, Apr 28 2022
CROSSREFS
Cf. A172043 (5*n^2-n+1).
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 29 2010
EXTENSIONS
Replaced definition with formula. - N. J. A. Sloane, Mar 03 2010
STATUS
approved

Search completed in 0.060 seconds