[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a171517 -id:a171517
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes p such that 52*p + 1 is prime.
+10
2
3, 13, 31, 43, 73, 109, 139, 151, 181, 193, 211, 223, 229, 283, 349, 379, 409, 421, 463, 523, 601, 619, 691, 769, 823, 853, 1021, 1033, 1069, 1153, 1231, 1279, 1303, 1453, 1459, 1471, 1531, 1663, 1693, 1723, 1741, 1783, 1831, 1873, 1933, 2029, 2131, 2251, 2269, 2293, 2593, 2671, 2749, 2791
OFFSET
1,1
COMMENTS
Or, primes in A248221. Subsequence of A248221. Note that a(1..6) coincide with A171517(1..6).
LINKS
MAPLE
A248368:=n->`if`(isprime(52*n+1) and isprime(n), n, NULL): seq(A248368(n), n=1..4000); # Wesley Ivan Hurt, Oct 05 2014
MATHEMATICA
s = {}; Do[If[PrimeQ[1 + 52*(p = Prime[n])], AppendTo[s, p]], {n, 500}]; s
Select[Prime[Range[500]], PrimeQ[52#+1]&] (* Harvey P. Dale, Aug 15 2017 *)
PROG
(PARI)
forprime(p=1, 10^4, if(isprime(52*p+1), print1(p, ", "))) \\ Derek Orr, Oct 05 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Oct 05 2014
STATUS
approved
a(n) = smallest prime p such that 2p + 2n - 1 is prime.
+10
2
2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 5, 3, 2, 2, 7, 3, 2, 3, 2, 2, 3, 2, 7, 3, 2, 5, 3, 2, 2, 7, 3, 2, 3, 2, 2, 13, 3, 2, 3, 2, 11, 3, 2, 5, 7, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 13, 7, 11, 5, 19, 3, 2, 3, 2, 5, 3, 2, 2, 7, 5, 5, 3, 2, 2, 7, 3, 2, 13, 3, 2, 3, 2, 7, 3, 2
OFFSET
0,1
FORMULA
a(-n) = A290838(n+1). - Iain Fox, Dec 14 2017
MATHEMATICA
Table[j=0; found=False; While[!found, j++; found=PrimeQ[2Prime[j]+2n-1]]; Prime[j], {n, 85}]
PROG
(PARI) a(n) = {my(p=2); while(!isprime(2*p+2*n-1), p = nextprime(p+1)); p; } \\ Michel Marcus, Aug 12 2017
CROSSREFS
Cf. A067076 (indices n at which a(n) = 2).
KEYWORD
nonn,easy
AUTHOR
XU Pingya, Aug 12 2017
EXTENSIONS
a(0) prepended by Iain Fox, Dec 14 2017
STATUS
approved
Primes p such that 3*p-+8 are primes.
+10
1
5, 7, 13, 17, 53, 73, 83, 113, 127, 157, 193, 223, 277, 347, 367, 433, 613, 647, 673, 743, 797, 907, 937, 1117, 1217, 1373, 1427, 1483, 1543, 1597, 1637, 1667, 1877, 1933, 2027, 2237, 2297, 2447, 2647, 2687, 2843, 3083, 3137, 3613, 3797, 4073, 4463, 4483
OFFSET
1,1
LINKS
EXAMPLE
5 is in the sequence since 3*5-8=7 and 3*5+8=23 are primes.
MATHEMATICA
Select[Prime[Range[7! ]], PrimeQ[3*#-8]&&PrimeQ[3*#+8]&]
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers m such that both p = 52*m + 1 and q = 52*p + 1 are prime.
+10
1
36, 39, 60, 126, 171, 189, 195, 300, 315, 405, 420, 435, 504, 540, 570, 606, 720, 756, 816, 876, 960, 1089, 1221, 1224, 1260, 1329, 1365, 1371, 1389, 1404, 1530, 1554, 1674, 1740, 1785, 1791, 1914, 1959, 2085, 2244, 2304, 2334, 2376, 2451, 2454, 2520, 2631, 2646, 2715, 2799, 2976
OFFSET
1,1
COMMENTS
All terms are divisible by 3, because if m == 1 or 2 (mod 3), either q or p is divisible by 3.
LINKS
MATHEMATICA
s={}; Do[If[PrimeQ[p=52*n+1)]&&PrimeQ[52*p+1], AppendTo[s, n]], {n, 3000}]; s
PROG
(PARI)
for(n=1, 10^4, p=52*n+1; if(isprime(p)&&isprime(52*p+1), print1(n, ", "))) \\ Derek Orr, Oct 06 2014
CROSSREFS
Subsequence of A248221.
KEYWORD
nonn
AUTHOR
Zak Seidov, Oct 05 2014
STATUS
approved

Search completed in 0.006 seconds