[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a177930 -id:a177930
     Sort: relevance | references | number | modified | created      Format: long | short | data
Locations of records in A177930.
+20
4
1, 2, 4, 8, 10, 16, 20, 24, 29, 33, 36, 46, 76, 99, 108, 132, 179, 213, 217, 251, 286, 397, 431, 439, 445, 471, 535, 658, 677, 702, 780, 889, 1227, 1296, 1388, 1395, 1430, 1438, 1624, 1817, 2082, 2396, 2423, 2978, 3133, 3138, 3432, 3511, 3699, 3838, 4024, 4104, 4589, 4930
OFFSET
1,2
COMMENTS
Or: positions m for which A177929(m)-1 and A177929(m)+1 are twin primes.
MAPLE
A020639 := proc(n) numtheory[factorset](n) ; min(op(%)) ; end proc:
A177929 := proc(n) option remember; if n = 1 then 4; else d1 := A020639(procname(n-1)-1) ; d2 := A020639(procname(n-1)+1) ; procname(n-1)+min(d1, d2) -1; end if; end proc:
A177930 := proc(n) d1 := A020639(A177929(n)-1) ; d2 := A020639(A177929(n)+1) ; min(d1, d2) ; end proc:
read("transforms") ; L := [seq(A177930(n), n=1..1300)] ; RECORDS(L)[2] ; # R. J. Mathar, May 31 2010
MATHEMATICA
lpf[n_] := FactorInteger[n][[1, 1]];
b[n_] := b[n] = If[n == 1, 4, b[n-1] + lpf[b[n-1]^2-1]-1];
Position[Table[b[n], {n, 1, 1000}], k_ /; PrimeQ[k-1] && PrimeQ[k+1]] // Flatten (* Jean-François Alcover, Feb 24 2024 *)
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 15 2010
EXTENSIONS
Extended by R. J. Mathar, May 31 2010
More terms from Jean-François Alcover, Feb 24 2024
STATUS
approved
Records in A177930.
+20
2
3, 5, 11, 29, 59, 137, 281, 569, 1151, 2309, 4649, 9341, 19139, 38711, 77489, 155381, 311681, 624047, 1248101, 2497421, 4998941, 10002437, 20005289, 40010609, 80021309, 160043909, 320090921, 640196267, 1280392739, 2560793201, 5121618767
OFFSET
1,1
COMMENTS
By the construction of A177929, this is a subsequence of A001359.
FORMULA
a(n) = A177930(A177931(n)) .
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 15 2010
EXTENSIONS
Extended by R. J. Mathar, May 31 2010
STATUS
approved
a(1)=2. Otherwise the average of the smallest prime divisors of 2n-1 and 2n+1.
+10
7
2, 4, 6, 5, 7, 12, 8, 10, 18, 11, 13, 14, 4, 16, 30, 17, 4, 21, 20, 22, 42, 23, 25, 27, 5, 28, 29, 4, 31, 60, 32, 4, 36, 35, 37, 72, 38, 5, 43, 41, 43, 44, 4, 46, 48, 5, 4, 51, 50, 52, 102, 53, 55, 108, 56, 58, 59, 4, 5, 9, 7, 4, 66, 65, 67, 69, 5, 70, 138, 71, 7, 8, 4, 76, 150, 77, 4, 81
OFFSET
1,1
COMMENTS
As n tends to infinity, we have 1) lim inf (a(n)/n)=0; 2) if there exist infinitely many twin primes, then lim sup (a(n)/n)=2, otherwise, lim sup (a(n)/n)=1.
LINKS
FORMULA
a(n) = (A090368(n)+A090368(n+1))/2. [R. J. Mathar, May 31 2010]
MAPLE
N:= 100: # to get a(1) to a(N)
S:= [1, seq(min(numtheory:-factorset(2*i-1)), i=2..N+1)]:
(S[2..-1]+S[1..-2])/2; # Robert Israel, Jul 31 2015
MATHEMATICA
Table[If[n == 1, 2, Mean[{FactorInteger[2 n - 1][[1, 1]], FactorInteger[2 n + 1][[1, 1]]}]], {n, 78}] (* Michael De Vlieger, Aug 02 2015 *)
PROG
(PARI) a(n) = if (n==1, 2, (vecmin(factor(2*n-1)[, 1]) + vecmin(factor(2*n+1)[, 1]))/2); \\ Michel Marcus, Feb 07 2016
(Magma) [2] cat [1/2*(Min(PrimeFactors(2*n-1))+ Min(PrimeFactors(2*n+1))):n in [2..80]]; // Vincenzo Librandi, Feb 07 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Shevelev, May 16 2010, May 22 2010
EXTENSIONS
More terms from R. J. Mathar, May 31 2010
STATUS
approved
Smallest prime divisor of (A177941(n))^2-4.
+10
2
3, 3, 7, 13, 5, 3, 5, 3, 37, 7, 79, 7, 163, 5, 3, 5, 3, 11, 3, 349, 17, 3, 5, 3, 5, 3, 17, 3, 5, 3, 5, 3, 757, 17, 3, 5, 3, 23, 3, 5, 3, 1567, 13, 5, 3, 5, 3, 7, 3163, 5, 3, 5, 3, 17, 3, 5, 3, 5, 3, 23, 3, 5, 3, 37, 7, 17, 3, 7, 23, 3, 13, 7, 5, 3, 5, 3, 7, 11, 3, 5, 3, 5, 3, 6547, 7, 13099, 7, 73
OFFSET
1,1
COMMENTS
Records are in A177945, indices of records in A177943.
FORMULA
a(n) = A020639((A177941(n))^2-4) .
MATHEMATICA
Differences[NestList[# + FactorInteger[#^2 - 4][[1, 1]] - 1 &, 5, 100]] + 1 (* Amiram Eldar, Dec 14 2018 after Michael De Vlieger at A177941 *)
PROG
(PARI) listap(nn) = {my(va = vector(nn), p); va[1] = 5; for (n=2, nn, p = factor(va[n-1]^2-4)[1, 1]; print1(p, ", "); va[n] = va[n-1] + p - 1; ); } \\ Michel Marcus, Dec 14 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 15 2010
EXTENSIONS
Entries checked by R. J. Mathar, Jun 30 2010
STATUS
approved
Locations of records in A177942.
+10
2
1, 3, 4, 9, 11, 13, 20, 33, 42, 49, 84, 86, 107, 109, 123, 128, 191, 295, 296, 318, 330, 337, 396, 453, 481, 616, 663, 771, 882, 1105, 1180, 1257, 1431, 1659, 1856, 1936, 2130, 2370, 2584, 2651, 2790, 2959, 3009, 3080, 3121, 3189, 3503, 3639, 3879, 3902, 3961
OFFSET
1,2
COMMENTS
Also: indices m for which A177941(m)-2 and A177941(m)+2 are cousin primes (A023200).
PROG
(PARI) listai(nn) = {my(va = vector(nn), rec = 0, ind = 1); va[1] = 5; for (n=2, nn, p = factor(va[n-1]^2-4)[1, 1]; if (p > rec, print1(n-1, ", "); rec = p); va[n] = va[n-1] + p - 1; ); } \\ Michel Marcus, Dec 14 2018
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 15 2010
EXTENSIONS
1 inserted, a(10) corrected and sequence extended by R. J. Mathar, Jun 30 2010
More terms from Michel Marcus, Dec 14 2018
STATUS
approved
Record values in A177942.
+10
2
3, 7, 13, 37, 79, 163, 349, 757, 1567, 3163, 6547, 13099, 26497, 52999, 106273, 212557, 426889, 855427, 1710853, 3421903, 6845869, 13691767, 27385087, 54771007, 109542907, 219096259, 438203677, 876417229, 1752875893, 3505814527, 7011656629, 14023322167, 28046754727, 56093637367
OFFSET
1,1
COMMENTS
From the construction of A177941, this is a subsequence of A023200.
PROG
(PARI) listar(nn) = {my(va = vector(nn), rec = 0); va[1] = 5; for (n=2, nn, p = factor(va[n-1]^2-4)[1, 1]; if (p > rec, print1(p, ", "); rec = p); va[n] = va[n-1] + p - 1; ); } \\ Michel Marcus, Dec 14 2018
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 15 2010
EXTENSIONS
Sequence extended by R. J. Mathar, Jun 30 2010
More terms from Michel Marcus, Dec 14 2018
STATUS
approved

Search completed in 0.007 seconds