[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a177935 -id:a177935
     Sort: relevance | references | number | modified | created      Format: long | short | data
Continued fraction for sqrt(107).
+10
4
10, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1, 9, 1, 2, 20, 2, 1
OFFSET
0,1
FORMULA
G.f.: (-10*x^6 - 2*x^5 - x^4 - 9*x^3 - x^2 - 2*x - 10)/(x^6 - 1). - Chai Wah Wu, Oct 02 2021
MATHEMATICA
ContinuedFraction[Sqrt[107], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 11 2011 *)
PROG
(Python)
from sympy import sqrt
from sympy.ntheory.continued_fraction import continued_fraction_iterator
def aupton(terms):
gen = continued_fraction_iterator(sqrt(107))
return [next(gen) for i in range(terms)]
print(aupton(82)) # Michael S. Branicky, Oct 02 2021
CROSSREFS
Cf. A177935 (decimal expansion), A041192/A041193 (convergents).
KEYWORD
nonn,cofr,easy
STATUS
approved
Decimal expansion of sqrt(71216963807).
+10
4
2, 6, 6, 8, 6, 5, 0, 6, 6, 6, 6, 6, 6, 5, 8, 3, 3, 9, 5, 2, 8, 7, 2, 3, 9, 6, 2, 5, 7, 5, 1, 6, 2, 6, 1, 3, 0, 0, 5, 2, 1, 5, 9, 5, 9, 8, 0, 8, 1, 3, 7, 4, 6, 5, 9, 5, 8, 9, 9, 4, 3, 9, 9, 1, 5, 9, 0, 9, 6, 5, 3, 5, 0, 6, 7, 8, 3, 5, 1, 1, 4, 2, 0, 4, 4, 2, 3, 3, 6, 9, 1, 0, 8, 2, 1, 4, 5, 3, 0, 0, 8, 4, 7, 6, 7
OFFSET
6,1
COMMENTS
Continued fraction expansion of sqrt(71216963807) is 266865 followed by (repeat 15, 533730).
sqrt(71216963807) = sqrt(11)*sqrt(19)*sqrt(107)*sqrt(179)*sqrt(17791).
EXAMPLE
sqrt(71216963807) = 266865.06666665833952872396...
MATHEMATICA
RealDigits[Sqrt[71216963807], 10, 120][[1]] (* Harvey P. Dale, Jul 31 2021 *)
CROSSREFS
Cf. A010468 (decimal expansion of sqrt(11)), A010475 (decimal expansion of sqrt(19)), A177935 (decimal expansion of sqrt(107)), A177936 (decimal expansion of sqrt(179)), A177937 (decimal expansion of sqrt(17791)), A177933 (decimal expansion of (232405+sqrt(71216963807))/348378).
KEYWORD
cons,nonn
AUTHOR
Klaus Brockhaus, May 15 2010
STATUS
approved
Numerators of continued fraction convergents to sqrt(107).
+10
3
10, 21, 31, 300, 331, 962, 19571, 40104, 59675, 577179, 636854, 1850887, 37654594, 77160075, 114814669, 1110492096, 1225306765, 3561105626, 72447419285, 148455944196, 220903363481, 2136586215525, 2357489579006
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1924,0,0,0,0,0,-1).
FORMULA
a(n) = 1924*a(n-6)-a(n-12). G.f.: -(x^11-10*x^10+21*x^9-31*x^8+300*x^7-331*x^6-962*x^5-331*x^4-300*x^3-31*x^2-21*x-10)/(x^12-1924*x^6+1). [Colin Barker, Jul 19 2012]
MATHEMATICA
Numerator[Convergents[Sqrt[107], 30]] (* Vincenzo Librandi, Oct 26 2013 *)
CROSSREFS
Cf. A041193 (denominators), A010173 (continued fraction), A177935 (decimal expansion).
KEYWORD
nonn,cofr,frac,easy
AUTHOR
STATUS
approved
Denominators of continued fraction convergents to sqrt(107).
+10
3
1, 2, 3, 29, 32, 93, 1892, 3877, 5769, 55798, 61567, 178932, 3640207, 7459346, 11099553, 107355323, 118454876, 344265075, 7003756376, 14351777827, 21355534203, 206551585654, 227907119857, 662365825368
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1924,0,0,0,0,0,-1).
FORMULA
a(n) = 1924*a(n-6)-a(n-12). G.f.: -(x^10-2*x^9+3*x^8-29*x^7+32*x^6 -93*x^5 -32*x^4-29*x^3-3*x^2-2*x-1) / (x^12-1924*x^6+1). - Colin Barker, Jul 19 2012
MATHEMATICA
Denominator[Convergents[Sqrt[107], 30]] (* or *) LinearRecurrence[ {0, 0, 0, 0, 0, 1924, 0, 0, 0, 0, 0, -1}, {1, 2, 3, 29, 32, 93, 1892, 3877, 5769, 55798, 61567, 178932}, 30] (* Harvey P. Dale, Aug 30 2013 *)
CoefficientList[Series[- (x^10 - 2 x^9 + 3 x^8 - 29 x^7 + 32 x^6 - 93 x^5 - 32 x^4 - 29 x^3 - 3 x^2 - 2 x - 1)/(x^12 - 1924 x^6 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 24 2013 *)
CROSSREFS
Cf. A041192 (numerators), A010173 (continued fraction), A177935 (decimal expansion).
KEYWORD
nonn,frac,easy
AUTHOR
STATUS
approved

Search completed in 0.005 seconds