[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a176601 -id:a176601
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes p such that q=3//p, r=p//3, R(q) and R(r) are primes.
+10
0
7, 11, 37, 73, 191, 373, 719, 929, 1033, 1193, 3301, 3461, 3911, 3931, 10223, 10771, 12071, 12451, 13669, 13931
OFFSET
1,1
COMMENTS
q and r are emirps (see A006567) as R(q) and R(r) are requested to be primes too
3 = prime(2) is first prime for such a "construction" with prefixed/appended number and reversals
Necessarily FSD (First Significant Digit) of p is 1, 3, 7 or 9
If such a p is a palindromic prime, i.e. p = R(p), then q = R(r) and r = R(q):
Proof: q = 3//p = 3//R(p) = R(p//3) = R(r), r = p//3 = R(p)//3 = R(3//p) = R(q).
If such a p is an emirp, i.e. R(p) also prime, then R(p) is also term of sequence:
Proof: 3//R(p) = R(p//3) = R(r), R(p)//3 = R(3//p) = R(q), R(3//R(p)) = p//3 = r, R(R(p)//3) = 3//p = q.
List of (p: q, r, R(q), R(r))
(7=palprime(4): 37, 73, 73, 37), (11=palprime(5): 311, 113, 113, 311),
(37=emirp(4): 337, 373, 733, 373), (73=emirp(6): 373, 733, 373, 337),
(191=palprime(10): 3191, 1913, 1913, 3191), (373=palprime(13): 3373, 3733, 3733, 3373),
(719=prime(128): 3719, 7193, 9173, 3917), (929=palprime(20): 3929, 9293, 9293, 3929),
(1033=emirp(40): 31033, 10333, 33013, 33301), (1193=emirp(50): 31193, 11933, 39113, 33911),
(3301=emirp(115): 33301, 33013, 10333, 31033), (3461=prime(484): 33461, 34613, 16433, 31643),
(3911=emirp(145): 33911, 39113, 11933, 31193), (3931=prime(546): 33931, 39313, 13933, 31393),
(10223=prime(1254): 310223, 102233, 322013, 332201), (10771=prime(1312): 310771, 107713, 177013, 317701),
(12071=emirp(326): 312071, 120713, 170213, 317021), (12451=prime(1486): 312451, 124513, 154213, 315421),
(13669=prime(1614): 313669, 136693, 966313, 396631), (13931=palprime(31): 313931, 139313, 139313, 313931)
REFERENCES
Peter Bundschuh: Einfuehrung in die Zahlentheorie, 6. Auflage, Springer, Berlin, 2008
Martin Gardner: Die magischen Zahlen des Dr. Matrix , Wolfgang Krueger Verlag FrankfurtMain, 1987
EXAMPLE
q=3//7=37=prime(12), r=7//3=73=prime(21), R(q)=r, R(r)=q, p=7=prime(4) is 1st term
q=3//719=3719=prime(519), r=719//3=7193=prime(919), R(q)=9173=prime(1137), R(r)=3917=prime(452),
p=719=prime(2^7) is 7th term and the first where q, r, R(q), R(r) are four different primes
CROSSREFS
KEYWORD
base,nonn,uned
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 29 2010
STATUS
approved

Search completed in 0.005 seconds