[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a176452 -id:a176452
     Sort: relevance | references | number | modified | created      Format: long | short | data
First column of triangle in A176452.
+20
11
1, 1, 1, 2, 4, 7, 13, 25, 48, 92, 176, 338, 649, 1246, 2392, 4594, 8823, 16945, 32545, 62509, 120060, 230598, 442910, 850701, 1633948, 3138339, 6027842, 11577747, 22237515, 42711863, 82037200, 157569867, 302646401, 581296715, 1116503866, 2144482948, 4118935248, 7911290530
OFFSET
1,4
COMMENTS
a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 3*p(k+1), see example. [Joerg Arndt, Dec 18 2012]
Row 2 of Table 1 of Elsholtz, row 1 being A002572. - Jonathan Vos Post, Aug 30 2011
LINKS
Christian Elsholtz, Clemens Heuberger, Daniel Krenn, Algorithmic counting of nonequivalent compact Huffman codes, arXiv:1901.11343 [math.CO], 2019.
Christian Elsholtz, Clemens Heuberger, Helmut Prodinger, The number of Huffman codes, compact trees, and sums of unit fractions, arXiv:1108.5964 [math.CO], Aug 30, 2011. Also IEEE Trans. Information Theory, Vol. 59, No. 2, 2013 pp. 1065-1075.
FORMULA
a(n) = A294775(n-1,2). - Alois P. Heinz, Nov 08 2017
EXAMPLE
From Joerg Arndt, Dec 18 2012: (Start)
There are a(7+1)=25 compositions 7=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 3*p(k+1):
[ 1] [ 1 1 1 1 1 1 1 ]
[ 2] [ 1 1 1 1 1 2 ]
[ 3] [ 1 1 1 1 2 1 ]
[ 4] [ 1 1 1 1 3 ]
[ 5] [ 1 1 1 2 1 1 ]
[ 6] [ 1 1 1 2 2 ]
[ 7] [ 1 1 1 3 1 ]
[ 8] [ 1 1 2 1 1 1 ]
[ 9] [ 1 1 2 1 2 ]
[10] [ 1 1 2 2 1 ]
[11] [ 1 1 2 3 ]
[12] [ 1 1 3 1 1 ]
[13] [ 1 1 3 2 ]
[14] [ 1 2 1 1 1 1 ]
[15] [ 1 2 1 1 2 ]
[16] [ 1 2 1 2 1 ]
[17] [ 1 2 1 3 ]
[18] [ 1 2 2 1 1 ]
[19] [ 1 2 2 2 ]
[20] [ 1 2 3 1 ]
[21] [ 1 2 4 ]
[22] [ 1 3 1 1 1 ]
[23] [ 1 3 1 2 ]
[24] [ 1 3 2 1 ]
[25] [ 1 3 3 ]
(End)
MATHEMATICA
b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]];
a[n_] := b[2n-1, 1, 3];
Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
PROG
(PARI)
/* g.f. as given in the Elsholtz/Heuberger/Prodinger reference */
N=66; q='q+O('q^N);
t=3; /* t-ary: t=2 for A002572, t=3 for A176485, t=4 for A176503 */
L=2 + 2*ceil( log(N) / log(t) );
f(k) = (1-t^k)/(1-t);
la(j) = prod(i=1, j, q^f(i) / ( 1 - q^f(i) ) );
nm=sum(j=0, L, (-1)^j * q^f(j) * la(j) );
dn=sum(j=0, L, (-1)^j * la(j) );
gf = nm / dn;
Vec( gf )
/* Joerg Arndt, Dec 27 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 07 2010
EXTENSIONS
Extended by Jonathan Vos Post, Aug 30 2011
Added terms beyond a(20)=62509, Joerg Arndt, Dec 18 2012.
STATUS
approved
Irregular triangle read by rows: T(n,k) = number of Huffman-equivalence classes of binary trees with n leaves and 2k leaves on the bottom level (n>=2, k>=1).
+10
3
1, 1, 1, 1, 2, 1, 3, 2, 5, 3, 1, 9, 5, 1, 1, 16, 9, 2, 1, 28, 16, 4, 2, 50, 28, 7, 4, 89, 50, 12, 7, 1, 159, 89, 22, 12, 2, 1, 285, 159, 39, 22, 3, 2, 510, 285, 70, 39, 22, 3, 1
OFFSET
2,5
REFERENCES
J. Paschke et al., Computing and estimating the number of n-ary Huffman sequences of a specified length, Discrete Math., 311 (2011), 1-7.
EXAMPLE
Triangle begins:
1
1
1 1
2 1
3 2
5 3 1
9 5 1 1
16 9 2 1
28 16 4 2
50 28 7 4
89 50 12 7 1
159 89 22 12 2 1
285 159 39 22 3 2
510 285 70 39 22 3 1
CROSSREFS
Cf. A176452, A176463. First three columns are A002572 (twice), A002573.
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Dec 07 2010
STATUS
approved
Irregular triangle read by rows: T(n,k) = number of Huffman-equivalence classes of ternary trees with 3n+1 leaves and 4k leaves on the bottom level (n>=1, k>=1).
+10
3
1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 4, 2, 1, 15, 8, 4, 2, 29, 15, 8, 4, 1, 57, 29, 15, 8, 2, 1, 112, 57, 29, 15, 4, 2, 1, 220, 112, 57, 29, 7, 4, 2
OFFSET
1,5
LINKS
Christian Elsholtz, Clemens Heuberger and Helmut Prodinger, The number of Huffman codes, compact trees, and sums of unit fractions, IEEE Trans. Information Theory, Vol. 59, No. 2, 2013 pp. 1065-1075; also arXiv:1108.5964 [math.CO], 2011.
Jordan Paschke, Jeffrey Burkert and Rebecca Fehribach, Computing and estimating the number of n-ary Huffman sequences of a specified length, Discrete Math., 311 (2011), 1-7.
EXAMPLE
Triangle begins:
1
1
1 1
2 1 1
4 2 1 1
8 4 2 1
15 8 4 2
29 15 8 4 1
57 29 15 8 2 1
112 57 29 15 4 2 1
220 112 57 29 7 4 2
CROSSREFS
Cf. A176431, A176452, A194628 - A194633. Leading column gives A176503.
KEYWORD
nonn,tabf,more
AUTHOR
N. J. A. Sloane, Dec 07 2010
STATUS
approved

Search completed in 0.005 seconds