[go: up one dir, main page]

login
Search: a174072 -id:a174072
     Sort: relevance | references | number | modified | created      Format: long | short | data
Duplicate of A174072.
+20
0
1, 2, 6, 24, 114, 674, 4714, 37754, 340404, 3412176, 37631268
OFFSET
1,2
CROSSREFS
Duplicate of A174072.
KEYWORD
dead
AUTHOR
N. J. A. Sloane, Sep 15 2012
STATUS
approved
Number of circular permutations of length n without consecutive triples i,i+2,i+4.
+10
8
1, 1, 1, 2, 6, 22, 109, 657, 4625, 37186, 336336, 3379058, 37328103, 449669577, 5866178493, 82387080624, 1239364493118, 19881771085788, 338797668091565, 6111688544942463, 116354993433563797, 2331395107113471188, 49042688584011866880, 1080639600739277669092, 24891049832682424745839
OFFSET
0,4
COMMENTS
Circular permutations are permutations whose indices are from the ring of integers modulo n.
REFERENCES
Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.
LINKS
Kyle Parsons, Arithmetic Progressions in Permutations, thesis, 2011. See Table 3, p. 9.
EXAMPLE
Since a(5)=22, there are (5-1)!-22=2 circular permutations with consecutive triples i,i+2,i+4 in all circular permutations of length 5. They are exactly (0,2,4,1,3) and (0,2,4,3,1).
CROSSREFS
Column 1 of A216719.
KEYWORD
nonn
AUTHOR
Isaac Lambert, Mar 06 2010
EXTENSIONS
a(10)-a(15) from Donovan Johnson, Sep 24 2010
a(0)-a(2) prepended and terms a(16) onward added by Max Alekseyev, Feb 04 2024
STATUS
approved
Number of equivalence classes of S_n under transformations of positionally and numerically adjacent elements of the form abc <--> acb where a<b<c.
+10
8
1, 1, 2, 5, 20, 102, 626, 4458, 36144, 328794, 3316944, 36755520, 443828184, 5800823880, 81591320880, 1228888215960, 19733475278880, 336551479543440, 6075437671458000, 115733952138747600, 2320138519554562560, 48827468196234035280, 1076310620915575933440
OFFSET
0,3
COMMENTS
Also the number of equivalence classes of S_n under transformations of positionally and numerically adjacent elements of the form abc <--> bac where a<b<c.
Also the number of equivalence classes of S_n under transformations of positionally and numerically adjacent elements of the form abc <--> cba where a<b<c.
Also the number of permutations of [n] avoiding consecutive triples j, j+1, j-1. a(4) = 20 = 4! - 4 counts all permutations of [4] except 1342, 2314, 3421, 4231. - Alois P. Heinz, Apr 14 2021
FORMULA
From Seiichi Manyama, Feb 20 2024: (Start)
G.f.: Sum_{k>=0} k! * ( x * (1-x^2) )^k.
a(n) = Sum_{k=0..floor(n/3)} (-1)^k * (n-2*k)! * binomial(n-2*k,k). (End)
EXAMPLE
From Alois P. Heinz, May 22 2012: (Start)
a(3) = 5: {123, 132}, {213}, {231}, {312}, {321}.
a(4) = 20: {1234, 1243, 1324}, {1342}, {1423}, {1432}, {2134}, {2143}, {2314}, {2341, 2431}, {2413}, {3124}, {3142}, {3214}, {3241}, {3412}, {3421}, {4123, 4132}, {4213}, {4231}, {4312}, {4321}. (End)
MAPLE
b:= proc(s, x, y) option remember; `if`(s={}, 1, add(
`if`(x=0 or x-y<>1 or j-x<>1, b(s minus {j}, y, j), 0), j=s))
end:
a:= n-> b({$1..n}, 0$2):
seq(a(n), n=0..14); # Alois P. Heinz, Apr 14 2021
# second Maple program:
a:= proc(n) option remember; `if`(n<5, [1$2, 2, 5, 20][n+1],
n*a(n-1)+3*a(n-2)-(2*n-2)*a(n-3)+(n-2)*a(n-5))
end:
seq(a(n), n=0..22); # Alois P. Heinz, Apr 14 2021
MATHEMATICA
a[n_] := a[n] = If[n < 5, {1, 1, 2, 5, 20}[[n+1]],
n*a[n-1] + 3*a[n-2] - (2n - 2)*a[n-3] + (n-2)*a[n-5]];
Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Apr 20 2022, after Alois P. Heinz *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x*(1-x^2))^k)) \\ Seiichi Manyama, Feb 20 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Tom Roby, May 21 2012
EXTENSIONS
a(9)-a(22) from Alois P. Heinz, Apr 14 2021
STATUS
approved
Triangle read by rows: number of permutations of [1..n] with k progressions of rise 2, distance 1 and length 3 (n >= 0, k >= 0).
+10
8
1, 1, 2, 6, 24, 114, 6, 674, 44, 2, 4714, 294, 30, 2, 37754, 2272, 276, 16, 2, 340404, 20006, 2236, 216, 16, 2, 3412176, 193896, 20354, 2200, 156, 16, 2, 37631268, 2056012, 206696, 20738, 1908, 160, 16, 2, 452745470, 23744752, 2273420, 215024, 21136, 1616, 164, 16, 2
OFFSET
0,3
LINKS
K. J. Parsons, Arithmetic progressions in permutations, Thesis, Washington and Lee University, 2011
Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, 2012. [broken link]
EXAMPLE
Triangle begins:
1
1
2
6 [this is for n=3]
24
114 6
674 44 2
4714 294 30 2
37754 2272 276 16 2
340404 20006 2236 216 16 2
3412176 193896 20354 2200 156 16 2
37631268 2056012 206696 20738 1908 160 16 2
...
MAPLE
b:= proc(s, x, y) option remember; expand(`if`(s={}, 1, add(
`if`(x>0 and x-y=2 and y-j=2, z, 1)*b(s minus {j}, y, j), j=s)))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b({$1..n}, 0$2)):
seq(T(n), n=0..12); # Alois P. Heinz, Apr 13 2021
MATHEMATICA
b[s_, x_, y_] := b[s, x, y] = Expand[If[s == {}, 1, Sum[
If[x > 0 && x - y == 2 && y - j == 2, z, 1]*
b[s ~Complement~ {j}, y, j], {j, s}]]];
T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0,
Exponent[p, z]}]][b[Range[n], 0, 0]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Mar 02 2022, after Alois P. Heinz *)
CROSSREFS
Row sums give A000142.
Column k=0 gives A174072.
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Sep 15 2012
EXTENSIONS
More terms from Alois P. Heinz, Apr 13 2021
STATUS
approved
Number of permutations of length n without modular consecutive triples i,i+2,i+4.
+10
7
1, 1, 2, 3, 24, 100, 594, 4389, 35744, 325395, 3288600, 36489992, 441091944, 5770007009, 81213883898, 1223895060315, 19662509172096, 335472890422812, 6057979283966814, 115434096553014565, 2314691409661484600, 48723117262650147387, 1074208020519754180896, 24755214452825129257168
OFFSET
0,3
REFERENCES
Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.
LINKS
Kyle Parsons, Arithmetic Progressions in Permutations, thesis, 2011. See Table 4 p. 12.
EXAMPLE
For example, a(5) does not count the permutation (0,4,1,3,2) since 4,1,3 is an arithmetic progression of 2 mod(5).
CROSSREFS
Column k=0 of A216724.
KEYWORD
nonn
AUTHOR
Isaac Lambert, Mar 06 2010
EXTENSIONS
a(11)-a(17) from Alois P. Heinz, Apr 13 2021
Terms a(18) onward from Max Alekseyev, Feb 04 2024
STATUS
approved
Number of circular permutations of length n without modular consecutive triples i,i+2,i+4.
+10
7
1, 6, 18, 93, 600, 4320, 35168, 321630, 3257109, 36199458, 438126986, 5736774869, 80808984725, 1218563192160, 19587031966352, 334329804180135, 6039535339644630, 115118210695441900, 2308967760171049528, 48613722701440862328, 1072008447320752890459
OFFSET
3,2
COMMENTS
Circular permutations are permutations whose indices are from the ring of integers modulo n.
LINKS
Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, 2012.
FORMULA
a(n) = A165962(n) for odd n.
EXAMPLE
Since a(5)=18, there are (5-1)!-18=4 circular permutations with modular consecutive triples i,i+2,i+4 in all circular permutations of length 5. These are exactly (0,2,4,1,3), (0,2,4,3,1), (0,4,2,1,3), and (0,3,2,4,1). Note some have more than one modular progression.
MATHEMATICA
f[i_, n_, k_]:=If[i==0 && k==0, 1, If[i==n && n==k, 1, Binomial[k-1, k-i]*Binomial[n-k-1, k-i-1] + 2*Binomial[k-1, k-i-1]*Binomial[n-k-1, k-i-1]+Binomial[k-1, k-i-1]*Binomial[n-k-1, k-i]]];
w1[i_, n_, k_]:=If[n-2k+i<0, 0, If[n-2k+i==0, 1, (n-2k+i-1)!]];
a[n_, k_]:=Sum[f[i, n, k]*w1[i, n, k], {i, 0, k}];
A165962[n_]:=(n-1)!+Sum[(-1)^k*a[n, k], {k, 1, n}];
b[n_, k_]:=Sum[Sum[Sum[f[j, n/2, p]*f[i-j, n/2, k-p]*w2[i, j, n, k, p], {p, 0, k}], {j, 0, i}], {i, 0, k-1}];
w2[i_, j_, n_, k_, p_]:=If[n/2-2p+j<=0 || n/2-2(k-p)+(i-j)<=0, 0, (n-2k+i-1)!];
A216727[n_?EvenQ]:=(n-1)!+Sum[(-1)^k*b[n, k], {k, 1, n}];
A216727[n_?OddQ]:=A165962[n];
Table[A216727[n], {n, 3, 23}] (* David Scambler, Sep 18 2012 *)
CROSSREFS
Column 1 of A216726.
KEYWORD
nonn
AUTHOR
Isaac Lambert, Mar 06 2010
STATUS
approved
Triangle read by rows: number of circular permutations of [1..n] with k progressions of rise 1, distance 1 and length 3 (n >= 3, k >= 0).
+10
6
1, 1, 1, 5, 0, 1, 20, 3, 0, 1, 102, 14, 3, 0, 1, 627, 72, 17, 3, 0, 1, 4461, 468, 87, 20, 3, 0, 1, 36155, 3453, 582, 103, 23, 3, 0, 1, 328849, 28782, 4395, 704, 120, 26, 3, 0, 1, 3317272, 267831, 37257, 5435, 834, 138, 29, 3, 0, 1
OFFSET
2,4
REFERENCES
Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.
EXAMPLE
Triangle begins:
1;
1, 1; [this is row n=3]
5, 0, 1;
20, 3, 0, 1;
102, 14, 3, 0, 1;
627, 72, 17, 3, 0, 1;
4461, 468, 87, 20, 3, 0, 1;
36155, 3453, 582, 103, 23, 3, 0, 1;
328849, 28782, 4395, 704, 120, 26, 3, 0, 1;
3317272, 267831, 37257, 5435, 834, 138, 29, 3, 0, 1;
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Sep 15 2012
EXTENSIONS
a(2,0)=1 added by N. J. A. Sloane, Apr 16 2021
STATUS
approved
Number of permutations of length n with no consecutive triples i,i+d,i+2d for all d>0.
+10
5
1, 1, 2, 5, 21, 100, 597, 4113, 32842, 292379, 2925367, 31983248, 383514347, 4966286235, 69508102006, 1039315462467, 16627618496319, 282023014602100, 5075216962675445, 96263599713301975, 1925002914124917950
OFFSET
0,3
EXAMPLE
For n=4, there are 4!-a(4)=3 permutations with some consecutive triple i,i+d,i+2d. Note for n=4, only d=1 applies. Hence those three permutations are (0,1,2,3), (1,2,3,0), and (3,0,1,2). Since here only d=1, this is the same value of a(4) in A002628.
MAPLE
b:= proc(s, x, y) option remember; `if`(s={}, 1, add(
`if`(x=0 or x<y or x-y<>y-j,
b(s minus {j}, y, j), 0), j=s))
end:
a:= n-> b({$1..n}, 0$2):
seq(a(n), n=0..14); # Alois P. Heinz, Apr 13 2021
MATHEMATICA
b[s_, x_, y_] := b[s, x, y] = If[s == {}, 1, Sum[If[x == 0 || x < y || x-y != y-j, b[s~Complement~{j}, y, j], 0], {j, s}]];
a[n_] := b[Range[n], 0, 0];
Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Sep 27 2022, after Alois P. Heinz *)
KEYWORD
nonn,more
AUTHOR
Isaac Lambert, Mar 15 2010
EXTENSIONS
a(0)-a(3) and a(10)-a(20) from Alois P. Heinz, Apr 13 2021
STATUS
approved

Search completed in 0.008 seconds