[go: up one dir, main page]

login
Search: a160524 -id:a160524
     Sort: relevance | references | number | modified | created      Format: long | short | data
Exceptional class of numbers k such that p(7*k + 5) == 0 (mod 49), where p() = A000041().
+10
7
73, 98, 99, 112, 141, 154, 171, 197, 225, 245, 266, 276, 283, 288, 290, 301, 309, 316, 322, 323, 330, 357, 385, 386, 406, 414, 444, 455, 463, 465, 483, 484, 491, 498, 512, 525, 539, 554, 575, 596, 602, 626, 654, 665, 679
OFFSET
1,1
COMMENTS
The unexceptional class consists of the numbers k == (2, 4, 5, or 6) (mod 7). Watson (1938, p. 125) proved that such numbers k satisfy p(7*k + 5) == 0 (mod 49).
LINKS
Watson, G. N., Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle) 179 (1938), 97-128; see pp. 124-127.
EXAMPLE
p(7*73 + 5) = p(516) = 49 * 113094142490063549717. This example is given by Watson (1938, p. 127). On the same page, he also says that p(105*7 + 5) = p(740) == 0 (mod 49) (even though 105 == 0 (mod 7)), but that is wrong.
MAPLE
isA327714 := n -> 0 = modp(combinat:-numbpart(7*n + 5), 49) and 2 <> modp(n, 7) and 4 <> modp(n, 7) and 5 <> n mod 7 and 6 <> n mod 7;
select(isA327714, [$ (1 .. 700)]);
CROSSREFS
KEYWORD
nonn
AUTHOR
Petros Hadjicostas, Sep 23 2019
STATUS
approved
Exceptional class of numbers k such that p(25*k + 24) == 0 (mod 125), where p() = A000041().
+10
3
6, 26, 60, 65, 70, 81, 96, 126, 135, 141, 175, 176, 196, 205, 206, 226, 305, 310, 330, 340, 346, 371, 380, 435, 436, 440, 460, 480, 481, 516, 595, 611, 646, 650, 665, 666, 685, 696, 700, 710, 716, 725, 730, 736, 745, 751, 760, 765, 775, 780, 811, 826, 841, 860, 871
OFFSET
1,1
COMMENTS
The unexceptional class consists of the numbers k == (2, 3, or 4) (mod 5). Watson (1938, p. 111) proved that such numbers k satisfy p(25*k + 24) == 0 (mod 125).
(p(25*a(m) + 24)/125: m >= 1) = (3177000598, 140513239982045202108972, 23104937422373952975695974907848646058, ...).
LINKS
Watson, G. N., Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle) 179 (1938), 97-128; see pp. 111-113.
EXAMPLE
p(25*6 + 24) = p(174) = 397125074750 = 3177000598 * 125 (the only example in Watson (1938)).
PROG
(PARI) is(n) = n % 5 < 2 && numbpart(25*n+24)%125==0 \\ David A. Corneth, Sep 23 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Petros Hadjicostas, Sep 23 2019
EXTENSIONS
More terms from David A. Corneth, Sep 23 2019
STATUS
approved

Search completed in 0.006 seconds