[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a169630 -id:a169630
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = Sum_{i=0..n} i*Fibonacci(i)^2.
+10
4
0, 1, 3, 15, 51, 176, 560, 1743, 5271, 15675, 45925, 133056, 381888, 1087645, 3077451, 8658951, 24245655, 67602608, 187789616, 519924075, 1435228575, 3951341811, 10852291273, 29740435200, 81340229376, 222058995001, 605201766675, 1646862596223, 4474969884411
OFFSET
0,3
FORMULA
O.g.f.: x*(1 - 2*x + 4*x^2 - 2*x^3 + x^4)/((1 - x)*(1 + x)^2*(1 - 3*x + x^2)^2).
a(n) = 5*a(n-1) - 4*a(n-2) - 10*a(n-3) + 10*a(n-4) + 4*a(n-5) - 5*a(n-6) + a(n-7).
a(n) = ((n-1)*Fibonacci(n) + n*Fibonacci(n-1))*Fibonacci(n) + (1 - (-1)^n)/2.
MAPLE
with(combinat): P:=proc(q) local a, n; a:=0; print(a); for n from 1 to q do
a:=a+n*fibonacci(n)^2; print(a); od; end: P(100); # Paolo P. Lava, Feb 17 2017
MATHEMATICA
a[n_] := Sum[i*Fibonacci[i]^2, {i, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 16 2017 *)
LinearRecurrence[{5, -4, -10, 10, 4, -5, 1}, {0, 1, 3, 15, 51, 176, 560}, 30] (* Harvey P. Dale, May 15 2021 *)
PROG
(PARI) a(n) = sum(i=0, n, i*fibonacci(i)^2) \\ Colin Barker, Feb 16 2017
(Sage) [sum(i*fibonacci(i)^2 for i in [0..n]) for n in range(30)]
(Maxima) makelist(sum(i*fib(i)^2, i, 0, n), n, 0, 30)
(Magma) [&+[i*Fibonacci(i)^2: i in [0..n]]: n in [0..30]];
CROSSREFS
Cf. A000045.
Partial sums of A169630.
Cf. A014286: partial sums of i*Fibonacci(i).
Cf. A064831: partial sums of (n+1-i)*Fibonacci(i)^2.
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Feb 16 2017
STATUS
approved
a(n) = n^2*Fibonacci(n).
+10
3
0, 1, 4, 18, 48, 125, 288, 637, 1344, 2754, 5500, 10769, 20736, 39377, 73892, 137250, 252672, 461533, 837216, 1509341, 2706000, 4827186, 8572124, 15159553, 26707968, 46890625, 82061668, 143188722, 249163824, 432466589, 748836000, 1293764509, 2230588416, 3838265442, 6592537372, 11303644625, 19349736192
OFFSET
0,3
FORMULA
From Colin Barker, Jun 29 2015: (Start)
a(n) = 3*a(n-1) - 5*a(n-3) + 3*a(n-5) + a(n-6).
G.f.: -x*(x^4 - x^3 + 6*x^2 + x + 1)/(x^2 + x - 1)^3. (End)
E.g.f.: exp(x/2)*x*(sqrt(5)*(1 + x)*cosh(sqrt(5)*x/2) + (1 + 3*x)*sinh(sqrt(5)*x/2))/sqrt(5). - Stefano Spezia, Mar 04 2023
MAPLE
a:= n-> n^2*(<<1|1>, <1|0>>^n)[1, 2]:
seq(a(n), n=0..50); # Alois P. Heinz, Jun 30 2015
MATHEMATICA
a[n_] := n^2 MatrixPower[{{1, 1}, {1, 0}}, n][[1, 2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 14 2016, after Alois P. Heinz *)
PROG
(PARI) concat(0, Vec(-x*(x^4-x^3+6*x^2+x+1)/(x^2+x-1)^3 + O(x^100))) \\ Colin Barker, Jun 29 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 27 2015
STATUS
approved
G.f.: x*(1-x^2)*(x^4+x^3-x^2+x+1) / (x^8-4*x^6-x^4-4*x^2+1).
(Formerly M1243)
+10
2
0, 1, 1, 2, 4, 11, 16, 49, 72, 214, 319, 947, 1408, 4187, 6223, 18502, 27504, 81769, 121552, 361379, 537196, 1597106, 2374129, 7058377, 10492416, 31194361, 46371025, 137862866, 204935836, 609282227, 905709904, 2692710841, 4002767136, 11900382694, 17690150767
OFFSET
0,4
COMMENTS
This is a rescaled version of the number of spanning trees in the cube of an n-cycle. See A331905 for details. - N. J. A. Sloane, Feb 06 2020
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000 [Jul 09 2015; a(0) inserted by Georg Fischer, Jan 27 2020]
G. Baron et al., The number of spanning trees in the square of a cycle, Fib. Quart., 23 (1985), 258-264.
Tsuyoshi Miezaki, A note on spanning trees.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
MAPLE
A005822:=-z*(z-1)*(1+z)*(z**4+z**3-z**2+z+1)/(-4*z**6-z**4-4*z**2+1+z**8); # [Conjectured (correctly) by Simon Plouffe in his 1992 dissertation; adapted to offset 0 by Georg Fischer, Jan 27 2020]
MATHEMATICA
CoefficientList[Series[x (1 - x^2) (x^4 + x^3 - x^2 + x + 1) / (x^8 - 4 x^6 - x^4 - 4 x^2 + 1), {x, 0, 35}], x] (* Vincenzo Librandi, Jan 28 2020 *)
PROG
(PARI) Vec(-x*(x-1)*(x+1)*(x^4+x^3-x^2+x+1)/(x^8-4*x^6-x^4-4*x^2+1) + O(x^50)) \\ Colin Barker, Jul 09 2015
(Magma) m:=40; R<x>:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!( x*(1-x^2)*(x^4+x^3-x^2+x+1) / (x^8-4*x^6-x^4-4*x^2+1))); // Vincenzo Librandi, Jan 28 2020
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
G.f. adapted to the offset from Colin Barker, Jul 09 2015
Entry revised by N. J. A. Sloane, Jan 25 2020 and Feb 06 2020.
STATUS
approved
Number of spanning trees in the multigraph cube of an n-cycle.
+10
2
1, 4, 12, 128, 605, 3072, 16807, 82944, 412164, 2035220, 9864899, 47579136, 227902597, 1084320412, 5134860060, 24207040512, 113664879137, 531895993344, 2481300851179, 11543181696640, 53565699079956, 248005494380204, 1145875775104967, 5284358088818688
OFFSET
1,2
COMMENTS
The multigraph cube of an n-cycle has n nodes V1, V2, ... Vn, with one edge Vi to Vj for each pair (i,j) such that j = i+1, i+2 or i+3 modulo n. It is a multigraph when n <= 6 because this produces instances of multiple edges between the same two vertices, and it also produces loops if n <= 3.
Baron et al. (1985) describes the corresponding sequence A169630 for the multigraph square of a cycle.
I conjecture that a(n) = gcd(n,2) * n * (A005822(n))^2. [This is correct - see the Formula section. - N. J. A. Sloane, Feb 06 2020)
Terms a(7) to a(18) calculated by Brendan McKay, and terms a(1) to a(6) by David J. Seal, in both cases using Kirchhoff's matrix tree theorem.
LINKS
G. Baron et al., The number of spanning trees in the square of a cycle, Fib. Quart., 23 (1985), 258-264.
Yoshiaki Doi et al., A note on spanning trees
Min Li, Zhibing Chen, Xiaoqing Ruan, and Xuerong Yong, The formulas for the number of spanning trees in circulant graphs, Disc. Math. 338 (11) (2015) 1883-1906, Lemma 1.
FORMULA
The following formulas were provided by Tsuyoshi Miezaki on Feb 05 2020 (see Doi et al. link). Let z1=(-3+sqrt(-7))/4, z2=(-3-sqrt(-7))/4; T(n,z) = cos(n*arccos(z)). Then a(n) = (2*n/7)*(T(n,z1)-1)*(T(n,z2)-1). Furthermore a(n) = 2*n*A005822(n)^2 if n is even, or n*A005822(n)^2 if n is odd. - N. J. A. Sloane, Feb 06 2020
EXAMPLE
The multigraph cube of a 4-cycle has four vertices, with two edges between each pair of distinct vertices - i.e., it is a doubled-edge cover of the complete graph on 4 vertices. The complete graph on 4 vertices has 4^2 = 16 spanning trees, and each of those spanning trees corresponds to 8 spanning trees of the multigraph tree because there are independent choices of 2 multigraph edges to be made for each of the three edges in the graph's spanning tree. So a(4) = 16 * 8 = 128.
MAPLE
a:= n-> ((<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|4|1|4>>^iquo(n, 2, 'd').
<[<0, 1, 4, 16>, <1, 2, 11, 49>][d+1]>)[1, 1])^2*n*(2-irem(n, 2)):
seq(a(n), n=1..30); # Alois P. Heinz, Feb 06 2020
CROSSREFS
Cf. A005822, A169630 (corresponding sequence for the multigraph square of an n-cycle).
KEYWORD
nonn
AUTHOR
David J. Seal, Jan 31 2020
EXTENSIONS
More terms from Alois P. Heinz, Feb 06 2020
STATUS
approved
Coefficients of polynomials in the denominator of the generating function f(x)=(x-x^2)/(x^3-2x^2-2x+1) for F(n)^2 (where F(n) is the Fibonacci sequence) and its successive derivatives starting with the highest power of x.
+10
1
1, -2, -2, 1, 1, -4, 0, 10, -4, 1, 1, -6, 6, 19, -24, -24, 19, 6, -6, 1, 1, -8, 16, 20, -80, -8, 134, -8, -80, 20, 16, -8, 1, 1, -10, 30, 5, -160, 128, 330, -340, -340, 330, 128, -160, 5, 30, -10, 1, 1, -12, 48, -34, -240, 468, 399, -1416, -192, 2020, -192, -1416, 399, 468, -240, -34, 48, -12, 1
OFFSET
0,2
FORMULA
(d^(n)/d(x^n))f(x), where f(x)=(x-x^2)/(x^3-2x^2-2x+1), for n=0, 1, 2, 3, ...
EXAMPLE
The coefficients of the first 2 polynomials in the denominator of the generating function f(x)=(x-x^2)/(x^3-2x^2-2x+1) for F(n)^2, (where F(n) is the Fibonacci sequence) and its successive derivatives starting with the highest power of x:
1,-2,-2,1; # see A007598
1,-4,0,10,-4,1; # see A169630
...
KEYWORD
sign,tabf
AUTHOR
Mohammad K. Azarian, Feb 01 2003
STATUS
approved

Search completed in 0.006 seconds