[go: up one dir, main page]

login
Search: a167759 -id:a167759
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers k such that d(k) is not an isolated number.
+10
1
1, 4, 9, 16, 24, 25, 30, 36, 40, 42, 48, 49, 54, 56, 64, 66, 70, 78, 80, 81, 88, 100, 102, 104, 105, 110, 112, 114, 120, 121, 128, 130, 135, 136, 138, 144, 152, 154, 162, 165, 168, 169, 170, 174, 176, 182, 184, 186, 189, 190, 192, 195, 196, 208, 210, 216, 222
OFFSET
1,2
COMMENTS
A000005 = A167759 U A168086. Where 0,1,3,5,7,8,9,10,11,13,14,15,16,17,19,20,21,22,.. are nonisolated numbers A167707. The nonisolated numbers of divisors of n. The positions of isolated numbers in A000005.
FORMULA
A000005(a(n)) = nonisolated number.
EXAMPLE
A000005(a(1)=1)=1, A000005(a(2)=4)=3, A000005(a(3)=9)=3.
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected (132, 140, 148 removed, 152 inserted etc.) by R. J. Mathar, Jun 04 2010
STATUS
approved
Sums of the next n consecutive nonsquare integers.
+10
1
0, 2, 8, 21, 46, 83, 136, 210, 306, 426, 575, 758, 972, 1223, 1519, 1855, 2236, 2669, 3156, 3694, 4290, 4956, 5678, 6467, 7332, 8269, 9278, 10368, 11548, 12804, 14148, 15593, 17126, 18753, 20485, 22325, 24262, 26308, 28481, 30756, 33148
OFFSET
0,2
COMMENTS
Row sums of nonsquare integers (A000037), seen as a regular triangle:
.
2 | 2,
8 | 3, 5,
21 | 6, 7, 8,
46 | 10, 11, 12, 13,
83 | 14, 15, 17, 18, 19,
136 | 20, 21, 22, 23, 24, 26,
210 | 27, 28, 29, 30, 31, 32, 33,
306 | 34, 35, 37, 38, 39, 40, 41, 42,
...
The equivalent for all integers are A006003 (starting from 1), A229183 (starting from 2) and A027480 (starting from 0).
There are several sequences close to nonsquares whose sum of groups of n terms starts like this sequence, notably A028761, A158276, A167759.
LINKS
MAPLE
R:= 0: s:= 1:
for n from 1 to 100 do
if floor(sqrt(s+n)) = floor(sqrt(s)) then
R:= R, n*s + n*(n+1)/2; s:= s+n;
else
R:= R, n*s + n*(n+1)/2 - floor(sqrt(s+n))^2 + s+n+1; s:= s+n+1;
fi
od:
R; # Robert Israel, Oct 02 2022
MATHEMATICA
Table[Sum[
i + Floor[1/2 + Sqrt[i]], {i, n (n - 1)/2 + 1, (n + 1) (n)/2}], {n,
0, 40}]
Join[{0}, Module[{nn=1000, nsi, len}, nsi=Select[Range[nn], !IntegerQ[Sqrt[#]]&]; len=Floor[ (Sqrt[ 8*Length[nsi]+1]-1)/2]; Total/@TakeList[nsi, Range[len]]]] (* Harvey P. Dale, Jan 04 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Olivier GĂ©rard, Aug 07 2016
EXTENSIONS
Definition clarified by Harvey P. Dale, Jan 04 2024
STATUS
approved

Search completed in 0.007 seconds