[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a167195 -id:a167195
     Sort: relevance | references | number | modified | created      Format: long | short | data
Records in A167494.
+10
8
2, 3, 5, 13, 31, 61, 139, 283, 571, 1153, 2311, 4651, 9343, 19141, 38569, 77419, 154873, 310231, 621631, 1243483, 2486971, 4974721
OFFSET
1,1
COMMENTS
Conjecture: each term > 3 of the sequence is the greater member of a twin prime pair (A006512).
Indices of the records are 1, 2, 4, 6, 9, 10, 15, 18, 21, 25, 28, 30, 38, 72, 90, ... [R. J. Mathar, Nov 05 2009]
One can formulate a similar conjecture without verification of the primality of the terms (see Conjecture 4 in my paper). [Vladimir Shevelev, Nov 13 2009]
LINKS
E. S. Rowland, A natural prime-generating recurrence, Journal of Integer Sequences, Vol.11 (2008), Article 08.2.8.
E. S. Rowland, A natural prime-generating recurrence, arXiv:0710.3217 [math.NT], 2007-2008.
V. Shevelev, A new generator of primes based on the Rowland idea, arXiv:0910.4676 [math.NT], 2009.
V. Shevelev, Three theorems on twin primes, arXiv:0911.5478 [math.NT], 2009-2010. [Vladimir Shevelev, Dec 03 2009]
MATHEMATICA
nxt[{n_, a_}] := {n + 1, If[EvenQ[n], a + GCD[n+1, a], a + GCD[n-1, a]]};
A167494 = DeleteCases[Differences[Transpose[NestList[nxt, {1, 2}, 10^7]][[2]]], 1];
Tally[A167494][[All, 1]] //. {a1___, a2_, a3___, a4_, a5___} /; a4 <= a2 :> {a1, a2, a3, a5} (* Jean-François Alcover, Oct 29 2018, using Harvey P. Dale's code for A167494 *)
KEYWORD
nonn,more
AUTHOR
Vladimir Shevelev, Nov 05 2009
EXTENSIONS
Simplified the definition to include all records; one term added by R. J. Mathar, Nov 05 2009
a(16) to a(21) from R. J. Mathar, Nov 19 2009
a(22) from Jean-François Alcover, Oct 29 2018
STATUS
approved
a(6) = 7, for n >= 7, a(n) = a(n - 1) + gcd(n, a(n - 1)).
+10
6
7, 14, 16, 17, 18, 19, 20, 21, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 116, 117, 120, 121, 122, 123, 124, 125, 126, 127, 128
OFFSET
6,1
COMMENTS
For every n >= 7, a(n) - a(n - 1) is 1 or prime. This Rowland-like "generator of primes" is different from A106108 (see comment to A167168) and from A167170. Note that, lim sup a(n) / n = 2, while lim sup A106108(n) / n = lim sup A167170(n) / n = 3.
Going up to a million, differences of two consecutive terms of this sequence gives primes about 0.009% of the time. The rest are 1's. [Alonso del Arte, Nov 30 2009]
LINKS
E. S. Rowland, A natural prime-generating recurrence, Journal of Integer Sequences, 11 (2008), Article 08.2.8.
MAPLE
A[6]:= 7:
for n from 7 to 100 do A[n]:= A[n-1] + igcd(n, A[n-1]) od:
seq(A[i], i=6..100); # Robert Israel, Jun 05 2016
MATHEMATICA
a[6] = 7; a[n_ /; n > 6] := a[n] = a[n - 1] + GCD[n, a[n - 1]]; Table[a[n], {n, 6, 58}]
PROG
(Python)
from math import gcd
def aupton(nn):
alst = [7]
for n in range(7, nn+1): alst.append(alst[-1] + gcd(n, alst[-1]))
return alst
print(aupton(68)) # Michael S. Branicky, Jul 14 2021
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Oct 30 2009, Nov 06 2009
EXTENSIONS
Verified and edited by Alonso del Arte, Nov 30 2009
STATUS
approved
a(1) = 2; thereafter a(n) = a(n-1) + gcd(n, a(n-1)) if n is odd, and a(n) = a(n-1) + gcd(n-2, a(n-1)) if n is even.
+10
5
2, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 18, 19, 20, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 52, 53, 54, 55, 60, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 124, 125, 126
OFFSET
1,1
COMMENTS
Conjectures. 1) For n >= 2, every difference a(n) - a(n-1) is 1 or prime; 2) Every record of differences a(n) - a(n-1) greater than 3 belongs to the sequence of the greater of twin primes (A006512).
Conjecture #1 above fails at n = 620757, with a(n) = 1241487 and a(n-1) = 1241460, difference = 27. Additionally, the terms of related A167495(m) quickly tend to index n/2. So for example, A167495(14) = 19141 is seen at n = 38284. - Bill McEachen, Jan 20 2023
It seems that, for n > 4, (3*n-3)/2 <= a(n) <= 2n - 3. Can anyone find a proof or disproof? - Charles R Greathouse IV, Jan 22 2023
LINKS
E. S. Rowland, A natural prime-generating recurrence, Journal of Integer Sequences, Vol.11 (2008), Article 08.2.8.
Vladimir Shevelev, A new generator of primes based on the Rowland idea, arXiv:0910.4676 [math.NT], 2009.
Vladimir Shevelev, Three theorems on twin primes, arXiv:0911.5478 [math.NT], 2009-2010.
FORMULA
For n > 3, n < a(n) < n*(n-1)/2. - Charles R Greathouse IV, Jan 22 2023
MATHEMATICA
nxt[{n_, a_}]:={n+1, If[EvenQ[n], a+GCD[n+1, a], a+GCD[n-1, a]]}; Transpose[ NestList[nxt, {1, 2}, 70]][[2]] (* Harvey P. Dale, Dec 05 2015 *)
PROG
(PARI) lista(nn)=my(va = vector(nn)); va[1] = 2; for (n=2, nn, va[n] = if (n%2, va[n-1] + gcd(n, va[n-1]), va[n-1] + gcd(n-2, va[n-1])); ); va; \\ Michel Marcus, Dec 13 2018
(Python)
from math import gcd
from itertools import count, islice
def agen(): # generator of terms
an = 2
for n in count(2):
yield an
an = an + gcd(n, an) if n&1 else an + gcd(n-2, an)
print(list(islice(agen(), 66))) # Michael S. Branicky, Jan 22 2023
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Nov 05 2009
EXTENSIONS
More terms from Harvey P. Dale, Dec 05 2015
STATUS
approved
List of first differences of A167493 that are different from 1.
+10
5
2, 3, 3, 5, 3, 13, 5, 3, 31, 61, 7, 5, 3, 7, 139, 5, 3, 283, 5, 3, 571, 7, 5, 3, 1153, 5, 3, 2311, 31, 4651, 17, 5, 13, 3, 3, 5, 3, 9343, 5, 3, 11, 3, 59, 3, 29, 3, 19, 7, 5, 3, 7, 19, 5, 3, 17, 3, 113
OFFSET
1,1
COMMENTS
Conjecture. All terms of the sequence are primes.
The conjecture is false: a(144)=27, a(146)=25, a(158)=45, etc., which are composite numbers. - Harvey P. Dale, Dec 05 2015
LINKS
E. S. Rowland, A natural prime-generating recurrence, Journal of Integer Sequences, Vol. 11 (2008), Article 08.2.8.
V. Shevelev, A new generator of primes based on the Rowland idea, arXiv:0910.4676 [math.NT], 2009.
V. Shevelev, Three theorems on twin primes, arXiv:0911.5478 [math.NT], 2009-2010. [From Vladimir Shevelev, Dec 03 2009]
MATHEMATICA
nxt[{n_, a_}]:={n+1, If[EvenQ[n], a+GCD[n+1, a], a+GCD[n-1, a]]}; DeleteCases[ Differences[ Transpose[NestList[nxt, {1, 2}, 20000]][[2]]], 1] (* Harvey P. Dale, Dec 05 2015 *)
PROG
(PARI) lista(nn) = {my(va = vector(nn)); va[1] = 2; for (n=2, nn, va[n] = if (n%2, va[n-1] + gcd(n, va[n-1]), va[n-1] + gcd(n-2, va[n-1])); ); select(x->(x!=1), vector(nn-1, n, va[n+1] - va[n])); } \\ Michel Marcus, Dec 13 2018
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Nov 05 2009
STATUS
approved
a(17)=37; for n>=17, a(n)=3n-14 if gcd(n,a(n-1))>1 and all prime divisors of n more than 17; a(n)=a(n-1)+1, otherwise
+10
2
37, 38, 43, 44, 45, 46, 55, 56, 57, 58, 59, 60, 61, 62, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157
OFFSET
17,1
COMMENTS
a(n+1)-a(n)+14 is either 15 or a prime > 17. For a generalization, see the second Shevelev link. - Edited by Robert Israel, Aug 21 2017
LINKS
E. S. Rowland, A natural prime-generating recurrence, Journal of Integer Sequences, Vol. 11 (2008), Article 08.2.8.
V. Shevelev, A new generator of primes based on the Rowland idea, arXiv:0910.4676 [math.NT], 2009.
V. Shevelev, Generalizations of the Rowland theorem, arXiv:0911.3491 [math.NT], 2009-2010.
MAPLE
A[17]:= 37:
q:= convert(select(isprime, [$2..17]), `*`);
for n from 18 to 100 do
if igcd(n, A[n-1]) > 1 and igcd(n, q) = 1 then A[n]:= 3*n-14
else A[n]:= A[n-1]+1 fi
od:
seq(A[i], i=17..100); # Robert Israel, Aug 21 2017
MATHEMATICA
nxt[{n_, a_}]:={n+1, If[GCD[n+1, a]>1&&FactorInteger[n+1][[1, 1]]>17, 3(n+1)-14, a+1]}; NestList[nxt, {17, 37}, 60][[All, 2]] (* Harvey P. Dale, Aug 15 2017 *)
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Nov 19 2009
EXTENSIONS
Corrected by Harvey P. Dale, Aug 15 2017
STATUS
approved
a(2) = 3; for n >= 3, a(n) = a(n-1) + gcd(n, a(n-1))^2.
+10
2
3, 12, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 575, 576, 577, 578, 579, 580, 1421, 1422, 1423, 1424, 1425, 1426, 1427, 1428, 1429, 1430, 1599, 1600, 1601, 1602, 1603, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612
OFFSET
2,1
COMMENTS
The first differences of a(n) are all squares.
LINKS
EXAMPLE
a(3) = 3 + gcd(3, 3)^2 = 3 + 9 = 12.
a(4) = 12 + gcd(4, 12)^2 = 12 + 16 = 28.
a(5) = 28 + gcd(5, 28)^2 = 28 + 1 = 29.
MAPLE
N:= 100: # for a(2)..a(N)
A:= Array(2..N):
A[2]:= 3:
for n from 3 to N do
A[n]:= A[n-1]+igcd(n, A[n-1])^2
od:
seq(A[i], i=2..N); # Robert Israel, Apr 13 2021
MATHEMATICA
Nest[Append[#1, #1[[-1]] + GCD[#2, #1[[-1]]]^2] & @@ {#, Length[#] + 2} &, {3}, 50] (* Michael De Vlieger, Apr 13 2021 *)
PROG
(Magma) I:=[0, 3]; Remove([n le 2 select I[n] else Self(n-1)+Gcd(n, Self(n-1))^2: n in [1..52]], 1);
CROSSREFS
KEYWORD
nonn,look
AUTHOR
STATUS
approved
First differences of A168143 which are different from 1, incremented by 14.
+10
0
19, 23, 31, 47, 79
OFFSET
1,1
COMMENTS
All terms of the sequence are primes greater than 17.
Are there more than 5 terms?
LINKS
E. S. Rowland, A natural prime-generating recurrence, Journal of Integer Sequences, 11 (2008), Article 08.2.8.
V. Shevelev, Generalizations of the Rowland theorem, arXiv:0911.3491 [math.NT], 2009-2010.
MATHEMATICA
A168143[17] = 37;
A168143[n_] := A168143[n] = If[GCD[n, A168143[n - 1]] > 1 && FactorInteger[n][[1, 1]] > 17, 3 n - 14, A168143[n - 1] + 1]
DeleteCases[Differences[A168143 /@ Range[17, 100]], 1] + 14 (* Eric Rowland, Jan 27 2019 *)
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Nov 19 2009
EXTENSIONS
Corrected and edited by Eric Rowland, Jan 27 2019
STATUS
approved

Search completed in 0.011 seconds