[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a157785 -id:a157785
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle of Gaussian (or q-binomial) coefficients for q = -2.
+10
30
1, 1, 1, 1, -1, 1, 1, 3, 3, 1, 1, -5, 15, -5, 1, 1, 11, 55, 55, 11, 1, 1, -21, 231, -385, 231, -21, 1, 1, 43, 903, 3311, 3311, 903, 43, 1, 1, -85, 3655, -25585, 56287, -25585, 3655, -85, 1, 1, 171, 14535, 208335, 875007, 875007, 208335, 14535, 171, 1, 1, -341, 58311
OFFSET
0,8
COMMENTS
May be read as a symmetric triangular (T(n,k)=T(n,n-k); k=0,...,n; n=0,1,...) or square array (A(n,r)=A(r,n)=T(n+r,r), read by antidiagonals). The diagonals of the former (or rows/columns of the latter) are A000012 (k=0), A077925 (k=1), A015249 (k=2), A015266 (k=3), A015287 (k=4), A015305 (k=5), A015323 (k=6), A015338 (k=7), A015356 (k=8), A015371 (k=9), A015386 (k=10), A015405 (k=11), A015423 (k=12), ... - M. F. Hasler, Nov 04 2012
The elements of the inverse matrix are apparently T^(-1)(n,k) = (-1)^n*A157785(n,k). - R. J. Mathar, Mar 12 2013
Fu et al. give two combinatorial interpretations of the (unsigned) q-binomial coefficients when q is a negative integer. - Peter Bala, Nov 02 2017
LINKS
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
J. A. de Azcarraga and J. A. Macfarlane, Group Theoretical Foundations of Fractional Supersymmetry, arxiv:hep-th/9506177 (1995).
S. Fu, V. Reiner, D. Stanton and N. Thiem, The negative q-binomial, arXiv:1108.4702 [math.CO], 2011.
R. Parthasarathy, q-Fermionic Numbers and Their Roles in Some Physical Problems, arxiv:quant-ph/0403216, 2004.
FORMULA
T(n, k) = q-binomial(n, k, -2).
T(n, k, q) = Product_{j=1..k} ( (1 - q^(n-j+1))/(1 - q^j) ), for q = -2. - Roger L. Bagula, Feb 10 2009
EXAMPLE
From Roger L. Bagula, Feb 10 2009: (Start)
1;
1, 1;
1, -1, 1;
1, 3, 3, 1;
1, -5, 15, -5, 1;
1, 11, 55, 55, 11, 1;
1, -21, 231, -385, 231, -21, 1;
1, 43, 903, 3311, 3311, 903, 43, 1;
1, -85, 3655, -25585, 56287, -25585, 3655, -85, 1;
1, 171, 14535, 208335, 875007, 875007, 208335, 14535, 171, 1; (End)
MAPLE
A015109 := proc(n, k)
mul( ((-2)^(1+n-i)-1)/((-2)^i-1) , i=1..k) ;
end proc: # R. J. Mathar, Mar 12 2013
MATHEMATICA
T[n_, k_, q_]:= Product[(1 - q^(n-j+1))/(1 - q^j), {j, k}];
Table[T[n, k, -2], {n, 0, 10}, {k, 0, n}]//Flatten (* Roger L. Bagula, Feb 10 2009 *)(* modified by G. C. Greubel, Nov 30 2021 *)
Table[QBinomial[n, k, -2], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Apr 09 2016 *)
PROG
(PARI) T015109(n, k, q=-2)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0, 1, 2, ...) \\ M. F. Hasler, Nov 04 2012
(Magma)
qBinomial:= func< n, k, q | k eq 0 select 1 else (&*[(1-q^(n-j+1))/(1-q^j): j in [1..k]]) >;
[qBinomial(n, k, -2): k in [0..n], n in [0..10]]; // A015109 // G. C. Greubel, Nov 30 2021
(Sage) flatten([[q_binomial(n, k, -2) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Nov 30 2021
CROSSREFS
Cf. A015152 (row sums).
Cf. A022166 (q=2), A022167 (q=3), A022168 (q=4), A022169 (q=5), A022170 (q=6), A022171 (q=7), A022172 (q=8), A022173 (q=9), A022174 (q=10), A022175 (q=11), A022176 (q=12), A022177 (q=13), A022178 (q=14), A022179 (q=15), A022180 (q=16), A022181 (q=17), A022182 (q=18), A022183 (q=19), A022184 (q=20), A022185 (q=21), A022186 (q=22), A022187 (q=23), A022188 (q=24).
Analogous triangles for other q: A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15).
KEYWORD
sign,tabl,easy
EXTENSIONS
Edited by M. F. Hasler, Nov 04 2012
STATUS
approved
Triangle T(n,k), 0<=k<=n, read by rows given by [1,q-1,q^2,q^3-q,q^4,q^5-q^2,q^6,q^7-q^3,q^8,...] DELTA [ -1,0,-q,0,-q^2,0,-q^3,0,-q^4,0,-q^5,0,...] (for q=2) = [1,1,4,6,16,28,64,...] DELTA [ -1,0,-2,0,-4,0,-8,0,-16,0,...] where DELTA is the operator defined in A084938.
+10
3
1, 1, -1, 2, -3, 1, 8, -14, 7, -1, 64, -120, 70, -15, 1, 1024, -1984, 1240, -310, 31, -1, 32768, -64512, 41664, -11160, 1302, -63, 1, 2097152, -4161536, 2731008, -755904, 94488, -5334, 127, -1, 268435456, -534773760, 353730560, -99486720, 12850368
OFFSET
0,4
COMMENTS
Row sums equal 0^n.
Row n contains the coefficients of Product_{j=0..n-1} (2^j*x-1), highest coefficient first. - Alois P. Heinz, Mar 26 2012
The elements of the matrix inverse are apparently given by T^(-1)(n,k) = (-1)^k*A022166(n,k). - R. J. Mathar, Mar 26 2013
LINKS
Alois P. Heinz, Rows n = 0..44
FORMULA
T(n,k) = (-1)^n*A135950(n,k). T(n,0) = A006125(n).
T(n,k) = [x^(n-k)] Product_{j=0..n-1} (2^j*x-1). - Alois P. Heinz, Mar 26 2012
EXAMPLE
Triangle begins :
1;
1, -1;
2, -3, 1;
8, -14, 7, -1;
64, -120, 70, -15, 1;
MAPLE
T:= n-> seq (coeff (mul (2^j*x-1, j=0..n-1), x, n-k), k=0..n):
seq (T(n), n=0..10); # Alois P. Heinz, Mar 26 2012
MATHEMATICA
row[n_] := CoefficientList[(-1)^n QPochhammer[x, 2, n] + O[x]^(n+1), x] // Reverse; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, May 26 2016 *)
KEYWORD
sign,tabl
AUTHOR
Philippe Deléham, Mar 10 2009
STATUS
approved

Search completed in 0.006 seconds