[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a156727 -id:a156727
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle T(n, k, m) = t(n,m)/( t(k,m) * t(n-k,m) ) with T(n, 0, m) = T(n, n, m) = 1, where t(n, m) = Product_{j=1..n} Product_{i=1..j-1} ( 1 - (m+1)*(i+1) ) and m = 3, read by rows.
+10
8
1, 1, 1, 1, -7, 1, 1, 77, 77, 1, 1, -1155, 12705, -1155, 1, 1, 21945, 3620925, 3620925, 21945, 1, 1, -504735, 1582344225, -23735163375, 1582344225, -504735, 1, 1, 13627845, 982635763725, 280051192661625, 280051192661625, 982635763725, 13627845, 1
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, -5, 156, 10397, 7285742, -20571484393, 562067684106392, 91653158600215578137, ...}.
FORMULA
T(n, k, m) = t(n,m)/( t(k,m) * t(n-k,m) ) with T(n, 0, m) = T(n, n, m) = 1, where t(n, m) = Product_{j=1..n} Product_{i=1..j-1} ( 1 - (m+1)*(i+1) ) and m = 3.
T(n, k, m, p, q) = (-p*(m+1))^(k*(n-k)) * (f(n,m,p,q)/(f(k,m,p,q)*f(n-k,m,p,q))) where Product_{j=1..n} Pochhammer( (q*(m+1) -1)/(p*(m+1)), j) for (m, p, q) = (3, 1, 1). - G. C. Greubel, Feb 25 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, -7, 1;
1, 77, 77, 1;
1, -1155, 12705, -1155, 1;
1, 21945, 3620925, 3620925, 21945, 1;
1, -504735, 1582344225, -23735163375, 1582344225, -504735, 1;
MATHEMATICA
(* First program *)
t[n_, k_]:= If[k==0, n!, Product[1 -(i+1)*(k+1), {j, n}, {i, 0, j-1}] ];
T[n_, k_, m_]:= If[n==0, 1, t[n, m]/(t[k, m]*t[n-k, m])];
Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Feb 25 2021 *)
(* Second program *)
f[n_, m_, p_, q_]:= Product[Pochhammer[(q*(m+1) -1)/(p*(m+1)), j], {j, n}];
T[n_, k_, m_, p_, q_]:= (-p*(m+1))^(k*(n-k))*(f[n, m, p, q]/(f[k, m, p, q]*f[n-k, m, p, q]));
Table[T[n, k, 3, 1, 1], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 25 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, m, p, q): return product( rising_factorial( (q*(m+1)-1)/(p*(m+1)), j) for j in (1..n))
def T(n, k, m, p, q): return (-p*(m+1))^(k*(n-k))*(f(n, m, p, q)/(f(k, m, p, q)*f(n-k, m, p, q)))
flatten([[T(n, k, 3, 1, 1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 25 2021
(Magma)
f:= func< n, m, p, q | n eq 0 select 1 else m eq 0 select Factorial(n) else (&*[ 1 -(p*i+q)*(m+1): i in [0..j], j in [0..n-1]]) >;
T:= func< n, k, m, p, q | f(n, m, p, q)/(f(k, m, p, q)*f(n-k, m, p, q)) >;
[T(n, k, 3, 1, 1): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 25 2021
CROSSREFS
Cf. A007318 (m=0), A156690 (m=1), A156691 (m=2), this sequence (m=3).
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 13 2009
EXTENSIONS
Edited by G. C. Greubel, Feb 25 2021
STATUS
approved
Triangle T(n, k, m) = t(n,m)/( t(k,m) * t(n-k,m) ) with T(n, 0, m) = T(n, n, m) = 1, where t(n, m) = Product_{j=1..n} Product_{i=1..j-1} ( 1 - (m+1)*(2*i-1) ) and m = 3, read by rows.
+10
6
1, 1, 1, 1, -3, 1, 1, 33, 33, 1, 1, -627, 6897, -627, 1, 1, 16929, 3538161, 3538161, 16929, 1, 1, -592515, 3343562145, -63527680755, 3343562145, -592515, 1, 1, 25478145, 5032061028225, 2581447307479425, 2581447307479425, 5032061028225, 25478145, 1
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, -1, 68, 5645, 7110182, -56841741493, 5172958787971592, 4953496772756652670937, ...}.
FORMULA
T(n, k, m) = t(n,m)/( t(k,m) * t(n-k,m) ) with T(n, 0, m) = T(n, n, m) = 1, where t(n, m) = Product_{j=1..n} Product_{i=1..j-1} ( 1 - (m+1)*(2*i-1) ) and m = 3.
T(n, k, m, p, q) = (-p*(m+1))^(k*(n-k)) * (f(n,m,p,q)/(f(k,m,p,q)*f(n-k,m,p,q))) where Product_{j=1..n} Pochhammer( (q*(m+1) -1)/(p*(m+1)), j) for (m, p, q) = (3, 2, -1). - G. C. Greubel, Feb 26 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, -3, 1;
1, 33, 33, 1;
1, -627, 6897, -627, 1;
1, 16929, 3538161, 3538161, 16929, 1;
1, -592515, 3343562145, -63527680755, 3343562145, -592515, 1;
MATHEMATICA
(* First program *)
t[n_, k_]:= If[k==0, n!, Product[1 -(2*i-1)*(k+1), {j, n}, {i, 0, j-1}] ];
T[n_, k_, m_]:= If[n==0, 1, t[n, m]/(t[k, m]*t[n-k, m])];
Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Feb 26 2021 *)
(* Second program *)
f[n_, m_, p_, q_]:= Product[Pochhammer[(q*(m+1) -1)/(p*(m+1)), j], {j, n}];
T[n_, k_, m_, p_, q_]:= (-p*(m+1))^(k*(n-k))*(f[n, m, p, q]/(f[k, m, p, q]*f[n-k, m, p, q]));
Table[T[n, k, 3, 2, -1], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 26 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, m, p, q): return product( rising_factorial( (q*(m+1)-1)/(p*(m+1)), j) for j in (1..n))
def T(n, k, m, p, q): return (-p*(m+1))^(k*(n-k))*(f(n, m, p, q)/(f(k, m, p, q)*f(n-k, m, p, q)))
flatten([[T(n, k, 3, 2, -1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 26 2021
(Magma)
f:= func< n, m, p, q | n eq 0 select 1 else m eq 0 select Factorial(n) else (&*[ 1 -(p*i+q)*(m+1): i in [0..j], j in [0..n-1]]) >;
T:= func< n, k, m, p, q | f(n, m, p, q)/(f(k, m, p, q)*f(n-k, m, p, q)) >;
[T(n, k, 3, 2, -1): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 26 2021
CROSSREFS
Cf. A007318 (m=0), A156696 (m=1), A156697 (m=2), this sequence (m=3).
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 13 2009
EXTENSIONS
Edited by G. C. Greubel, Feb 26 2021
STATUS
approved
Triangle T(n, k, m) = t(n,m)/( t(k,m) * t(n-k,m) ) with T(n, 0, m) = T(n, n, m) = 1, where t(n, m) = Product_{j=1..n} Product_{i=1..j-1} ( 1 - (m+1)*(3*i-2) ) and m = 1, read by rows.
+10
6
1, 1, 1, 1, -1, 1, 1, 7, 7, 1, 1, -91, 637, -91, 1, 1, 1729, 157339, 157339, 1729, 1, 1, -43225, 74736025, -971568325, 74736025, -43225, 1, 1, 1339975, 57920419375, 14306343585625, 14306343585625, 57920419375, 1339975, 1, 1, -49579075, 66434721023125, -410234402317796875, 7794453644038140625, -410234402317796875, 66434721023125, -49579075, 1
OFFSET
0,8
COMMENTS
Row sums are: {1, 2, 1, 16, 457, 318138, -822182723, 28728530689952, 6974117708745434977, 19261978962188975367009202, ...}.
FORMULA
T(n, k, m) = t(n,m)/( t(k,m) * t(n-k,m) ) with T(n, 0, m) = T(n, n, m) = 1, where t(n, m) = Product_{j=1..n} Product_{i=1..j-1} ( 1 - (m+1)*(3*i-2) ) and m = 1.
T(n, k, m, p, q) = (-p*(m+1))^(k*(n-k)) * (f(n,m,p,q)/(f(k,m,p,q)*f(n-k,m,p,q))) where Product_{j=1..n} Pochhammer( (q*(m+1) -1)/(p*(m+1)), j) for (m, p, q) = (1, 3, -2). - G. C. Greubel, Feb 26 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, -1, 1;
1, 7, 7, 1;
1, -91, 637, -91, 1;
1, 1729, 157339, 157339, 1729, 1;
1, -43225, 74736025, -971568325, 74736025, -43225, 1;
1, 1339975, 57920419375, 14306343585625, 14306343585625, 57920419375, 1339975, 1;
MATHEMATICA
(* First program *)
t[n_, k_]:= If[k==0, n!, Product[1 -(3*i-2)*(k+1), {j, n}, {i, 0, j-1}] ];
T[n_, k_, m_]:= If[n==0, 1, t[n, m]/(t[k, m]*t[n-k, m])];
Table[T[n, k, 1], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Feb 26 2021 *)
(* Second program *)
f[n_, m_, p_, q_]:= Product[Pochhammer[(q*(m+1) -1)/(p*(m+1)), j], {j, n}];
T[n_, k_, m_, p_, q_]:= (-p*(m+1))^(k*(n-k))*(f[n, m, p, q]/(f[k, m, p, q]*f[n-k, m, p, q]));
Table[T[n, k, 1, 3, -2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 26 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, m, p, q): return product( rising_factorial( (q*(m+1)-1)/(p*(m+1)), j) for j in (1..n))
def T(n, k, m, p, q): return (-p*(m+1))^(k*(n-k))*(f(n, m, p, q)/(f(k, m, p, q)*f(n-k, m, p, q)))
flatten([[T(n, k, 1, 3, -2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 26 2021
(Magma)
f:= func< n, m, p, q | n eq 0 select 1 else m eq 0 select Factorial(n) else (&*[ 1 -(p*i+q)*(m+1): i in [0..j], j in [0..n-1]]) >;
T:= func< n, k, m, p, q | f(n, m, p, q)/(f(k, m, p, q)*f(n-k, m, p, q)) >;
[T(n, k, 1, 3, -2): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 26 2021
CROSSREFS
Cf. A007318 (m=0), this sequence (m=1), A156725 (m=2), A156727 (m=3).
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 14 2009
EXTENSIONS
Edited by G. C. Greubel, Feb 26 2021
STATUS
approved
Triangle T(n, k, m) = t(n,m)/( t(k,m) * t(n-k,m) ) with T(n, 0, m) = T(n, n, m) = 1, where t(n, m) = Product_{j=1..n} Product_{i=1..j-1} ( 1 - (m+1)*(3*i-2) ) and m = 2, read by rows.
+10
6
1, 1, 1, 1, -2, 1, 1, 22, 22, 1, 1, -440, 4840, -440, 1, 1, 12760, 2807200, 2807200, 12760, 1, 1, -484880, 3093534400, -61870688000, 3093534400, -484880, 1, 1, 22789360, 5525052438400, 3204530414272000, 3204530414272000, 5525052438400, 22789360, 1
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, 0, 46, 3962, 5639922, -55684588958, 6420110978999522, 8653645559546848833282, 120959123027642635275104364802, ...}.
FORMULA
T(n, k, m) = t(n,m)/( t(k,m) * t(n-k,m) ) with T(n, 0, m) = T(n, n, m) = 1, where t(n, m) = Product_{j=1..n} Product_{i=1..j-1} ( 1 - (m+1)*(3*i-2) ) and m = 2.
T(n, k, m, p, q) = (-p*(m+1))^(k*(n-k)) * (f(n,m,p,q)/(f(k,m,p,q)*f(n-k,m,p,q))) where Product_{j=1..n} Pochhammer( (q*(m+1) -1)/(p*(m+1)), j) for (m, p, q) = (2, 3, -2). - G. C. Greubel, Feb 26 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, -2, 1;
1, 22, 22, 1;
1, -440, 4840, -440, 1;
1, 12760, 2807200, 2807200, 12760, 1;
1, -484880, 3093534400, -61870688000, 3093534400, -484880, 1;
MATHEMATICA
(* First program *)
t[n_, k_]:= If[k==0, n!, Product[1 -(3*i-2)*(k+1), {j, n}, {i, 0, j-1}] ];
T[n_, k_, m_]:= If[n==0, 1, t[n, m]/(t[k, m]*t[n-k, m])];
Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Feb 26 2021 *)
(* Second program *)
f[n_, m_, p_, q_]:= Product[Pochhammer[(q*(m+1) -1)/(p*(m+1)), j], {j, n}];
T[n_, k_, m_, p_, q_]:= (-p*(m+1))^(k*(n-k))*(f[n, m, p, q]/(f[k, m, p, q]*f[n-k, m, p, q]));
Table[T[n, k, 2, 3, -2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 26 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, m, p, q): return product( rising_factorial( (q*(m+1)-1)/(p*(m+1)), j) for j in (1..n))
def T(n, k, m, p, q): return (-p*(m+1))^(k*(n-k))*(f(n, m, p, q)/(f(k, m, p, q)*f(n-k, m, p, q)))
flatten([[T(n, k, 2, 3, -2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 26 2021
(Magma)
f:= func< n, m, p, q | n eq 0 select 1 else m eq 0 select Factorial(n) else (&*[ 1 -(p*i+q)*(m+1): i in [0..j], j in [0..n-1]]) >;
T:= func< n, k, m, p, q | f(n, m, p, q)/(f(k, m, p, q)*f(n-k, m, p, q)) >;
[T(n, k, 2, 3, -2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 26 2021
CROSSREFS
Cf. A007318 (m=0), A156722 (m=1), this sequence (m=2), A156727 (m=3).
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 14 2009
EXTENSIONS
Edited by G. C. Greubel, Feb 26 2021
STATUS
approved
Triangle T(n, k) = Product_{j=1..k} Product_{i=0..j-1} ( 1 - (n-k+1)*(3*i-2) ) with T(n, 0) = 1 and T(n, n) = n!, read by rows.
+10
6
1, 1, 1, 1, 5, 2, 1, 7, -25, 6, 1, 9, -98, -875, 24, 1, 11, -243, -15092, 398125, 120, 1, 13, -484, -98415, 46483360, 3441790625, 720, 1, 15, -845, -404624, 1076168025, 4151893715200, -743856998828125, 5040, 1, 17, -1350, -1263275, 11501032576, 458947996781625, -14092191572383232000, -4983748910023583984375, 40320
OFFSET
0,5
COMMENTS
Row sums are: 1, 2, 8, -11, -939, 382922, 3488175820, -739704029345313, -4997840642636470626461, ...
FORMULA
Let the square array t(n, k) be given by t(n, k) = Product_{j=1..n} Product_{i=0..j-1} ( 1 - (k+1)*(3*i -2) ) with t(n, 0) = n!. The number triangle, T(n, k), is the downward antidiagonals, i.e. T(n, k) = t(k, n-k).
T(n, k) = (-3*(n-k+1))^binomial(k+1, 2)*Product_{j=1..k} Pochhammer( -(2*(n-k) + 3)/(3*(n-k+1)), j) with T(n, 0) = 1 and T(n, n) = n!. - G. C. Greubel, Feb 25 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 5, 2;
1, 7, -25, 6;
1, 9, -98, -875, 24;
1, 11, -243, -15092, 398125, 120;
1, 13, -484, -98415, 46483360, 3441790625, 720;
1, 15, -845, -404624, 1076168025, 4151893715200, -743856998828125, 5040;
MATHEMATICA
(* First program *)
t[n_, k_]= If[k==0, n!, Product[1 -(3*i-2)*(k+1), {j, n}, {i, 0, j-1}]];
Table[t[k, n-k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Feb 25 2021 *)
(* Second program *)
T[n_, k_, p_, q_]:= If[k==0, 1, If[k==n, n!, (-p*(n-k+1))^Binomial[k+1, 2]*Product[ Pochhammer[(q*(n-k+1) -1)/(p*(n-k+1)), j], {j, k}]]];
Table[T[n, k, 3, -2], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 25 2021 *)
PROG
(Sage)
@CachedFunction
def T(n, k, p, q):
if (k==0): return 1
elif (k==n): return factorial(n)
else: return (-p*(n-k+1))^binomial(k+1, 2)*product( rising_factorial( (q*(n-k+1)-1)/(p*(n-k+1)), j) for j in (1..k))
flatten([[T(n, k, 3, -2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 24 2021
(Magma)
function T(n, k, p, q)
if k eq 0 then return 1;
elif k eq n then return Factorial(n);
else return (&*[1 - (n-k+1)*(p*m+q): m in [0..j-1], j in [1..k]]);
end if; return T;
end function;
[T(n, k, 3, -2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 25 2021
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 14 2009
EXTENSIONS
Edited by G. C. Greubel, Feb 25 2021
STATUS
approved

Search completed in 0.010 seconds