Displaying 1-7 of 7 results found.
page
1
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+17)^2 = y^2.
+10
10
0, 7, 28, 51, 88, 207, 340, 555, 1248, 2023, 3276, 7315, 11832, 19135, 42676, 69003, 111568, 248775, 402220, 650307, 1450008, 2344351, 3790308, 8451307, 13663920, 22091575, 49257868, 79639203, 128759176, 287095935, 464171332, 750463515, 1673317776
COMMENTS
Also values x of Pythagorean triples (x, x+17, y).
Corresponding values y of solutions (x, y) are in A155923.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a prime number in A066436, m >= 2 the associated value in A066049, the x values are given by the sequence defined by a(n) = 6*a(n-3)-a(n-6)+2p with a(0)=0, a(1)=2m+1, a(2)=6m^2-10m+4, a(3)=3p, a(4)=6m^2+10m+4, a(5)=40m^2-58m+21 (cf. A118673).
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(0)=p, b(1)=2*m^2+2m+1, b(2)=10m^2-14m+5, b(3)=5p, b(4)=10m^2+14m+5, b(5)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009
FORMULA
a(n) = 6*a(n-3) -a(n-6) +34 for n > 5; a(0)=0, a(1)=7, a(2)=28, a(3)=51, a(4)=88, a(5)=207.
G. f.: x*(7 +21*x +23*x^2 -5*x^3 -7*x^4 -5*x^5)/((1-x)*(1-6*x^3+x^6)).
MATHEMATICA
Select[Range[0, 100000], IntegerQ[Sqrt[#^2+(#+17)^2]]&] (* or *) LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 7, 28, 51, 88, 207, 340}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
PROG
(Magma) [ n: n in [0..25000000] | IsSquare(2*n*(n+17)+289) ];
(PARI) m=32; v=concat([0, 7, 28, 51, 88, 207], vector(m-6)); for(n=7, m, v[n]=6*v[n-3]-v[n-6]+34); v
Decimal expansion of (19+6*sqrt(2))/17.
+10
10
1, 6, 1, 6, 7, 8, 1, 2, 5, 7, 3, 0, 8, 1, 5, 1, 1, 9, 3, 6, 9, 4, 7, 1, 3, 6, 6, 7, 3, 6, 8, 1, 2, 8, 7, 3, 3, 6, 1, 2, 8, 2, 5, 3, 6, 7, 7, 8, 0, 0, 9, 9, 3, 1, 9, 9, 4, 4, 7, 1, 0, 4, 9, 5, 7, 6, 1, 4, 3, 4, 9, 9, 2, 3, 9, 8, 3, 9, 0, 7, 1, 9, 5, 9, 4, 2, 5, 4, 4, 2, 3, 8, 8, 0, 3, 4, 4, 0, 8, 4, 4, 9, 4, 7, 1
COMMENTS
lim_{n -> infinity} b(n)/b(n-1) = (19+6*sqrt(2))/17 for n mod 3 = {0, 2}, b = A155923.
lim_{n -> infinity} b(n)/b(n-1) = ((19+6*sqrt(2))/17)^2 for n mod 3 = {0, 2}, b = A156159.
EXAMPLE
(19+6*sqrt(2))/17 = 1.61678125730815119369...
MATHEMATICA
RealDigits[(19 + 6*Sqrt[2])/17, 10, 100][[1]] (* G. C. Greubel, Jul 05 2017 *)
CROSSREFS
Cf. A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A156164 (decimal expansion of 17+12*sqrt(2)).
a(n) = 6*a(n-1)-a(n-2) for n > 2; a(1) = 13, a(2) = 53.
+10
4
13, 53, 305, 1777, 10357, 60365, 351833, 2050633, 11951965, 69661157, 406014977, 2366428705, 13792557253, 80388914813, 468540931625, 2730856674937, 15916599117997, 92768738033045, 540695829080273, 3151406236448593
COMMENTS
lim_{n -> infinity} a(n)/a(n-1) = 3+2*sqrt(2).
FORMULA
a(n) = ((50+31*sqrt(2))*(3-2*sqrt(2))^n+(50-31*sqrt(2))*(3+2*sqrt(2))^n)/4.
G.f.: x*(13-25*x)/(1-6*x+x^2).
PROG
(PARI) {m=20; v=concat([13, 53], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-v[n-2]); v}
a(n) = 6*a(n-1)-a(n-2) for n > 2; a(1) = 17, a(2) = 85.
+10
4
17, 85, 493, 2873, 16745, 97597, 568837, 3315425, 19323713, 112626853, 656437405, 3825997577, 22299548057, 129971290765, 757528196533, 4415197888433, 25733659134065, 149986756915957, 874186882361677, 5095134537254105
COMMENTS
lim_{n -> infinity} a(n)/a(n-1) = 3+2*sqrt(2).
FORMULA
a(n) = ((2+sqrt(2))*(3-2*sqrt(2))^n+(2-sqrt(2))*(3+2*sqrt(2))^n)*17/4.
G.f.: 17*x*(1-x)/(1-6*x+x^2).
PROG
(PARI) {m=20; v=concat([17, 85], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-v[n-2]); v}
a(n) = 6*a(n-1) - a(n-2) for n > 2; a(1) = 25, a(2) = 137.
+10
4
25, 137, 797, 4645, 27073, 157793, 919685, 5360317, 31242217, 182092985, 1061315693, 6185801173, 36053491345, 210135146897, 1224757390037, 7138409193325, 41605697769913, 242495777426153, 1413368966787005
FORMULA
a(n) = ((26+7*sqrt(2))*(3-2*sqrt(2))^n+(26-7*sqrt(2))*(3+2*sqrt(2))^n)/4.
G.f.: x*(25-13*x)/(1-6*x+x^2).
Limit_{n -> oo} a(n)/a(n-1) = 3+2*sqrt(2).
MATHEMATICA
LinearRecurrence[{6, -1}, {25, 137}, 30] (* Harvey P. Dale, Jan 02 2019 *)
PROG
(PARI) {m=19; v=concat([25, 137], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-v[n-2]); v}
Squares of the form k^2+(k+17)^2 with integer k.
+10
4
169, 289, 625, 2809, 7225, 18769, 93025, 243049, 635209, 3157729, 8254129, 21576025, 107267449, 280395025, 732947329, 3643933225, 9525174409, 24898630849, 123786459889, 323575532569, 845820499225, 4205095700689
COMMENTS
Square roots of k^2+(k+17)^2 are in A155923, values k (except for -5) are in A118120.
FORMULA
a(n) = 34*a(n-3)-a(n-6)-2312 for n > 6; a(1)=169, a(2)=289, a(3)=625, a(4)=2809, a(5)=7225, a(6)=18769.
G.f.: x*(169+120*x+336*x^2-3562*x^3+336*x^4+120*x^5+169*x^6)/((1-x)*(1-34*x^3+x^6)).
Limit_{n -> oo} a(n)/a(n-3) = (17+12*sqrt(2)).
Limit_{n -> oo} a(n)/a(n-1) = ((19+6*sqrt(2))/17)^2 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = ((387+182*sqrt(2))/17^2)^2 for n mod 3 = 1.
EXAMPLE
625 = 25^2 is of the form k^2+(k+17)^2 with k = 7: 7^2+24^2 = 625. Hence 625 is in the sequence.
MATHEMATICA
LinearRecurrence[{1, 0, 34, -34, 0, -1, 1}, {169, 289, 625, 2809, 7225, 18769, 93025}, 30] (* Harvey P. Dale, Apr 22 2022 *)
PROG
(PARI) {forstep(n=-5, 1600000, [1, 3], if(issquare(a=2*n*(n+17)+289), print1(a, ", ")))}
CROSSREFS
Cf. A118120, A156035 (decimal expansion of 3+2*sqrt(2)), A156164 (decimal expansion of 17+12*sqrt(2)), A156163 (decimal expansion of (19+6*sqrt(2))/17), A157649 (decimal expansion of (387+182*sqrt(2))/17^2).
EXTENSIONS
G.f. corrected, fourth comment and cross-references edited by Klaus Brockhaus, Sep 23 2009
Decimal expansion of (387 + 182*sqrt(2))/17^2.
+10
3
2, 2, 2, 9, 7, 1, 2, 3, 4, 7, 2, 3, 8, 4, 1, 9, 7, 1, 9, 3, 1, 4, 5, 5, 8, 2, 9, 6, 9, 0, 7, 1, 4, 5, 5, 0, 2, 7, 6, 7, 0, 5, 9, 7, 9, 6, 9, 5, 0, 1, 8, 8, 7, 5, 1, 9, 6, 5, 9, 3, 6, 7, 2, 0, 8, 1, 0, 7, 7, 2, 7, 0, 2, 6, 9, 9, 3, 2, 0, 0, 0, 3, 7, 0, 5, 0, 8, 8, 3, 4, 3, 4, 1, 7, 4, 0, 7, 4, 9, 5, 6, 3, 2, 4, 3
COMMENTS
Lim_{n -> infinity} b(n)/b(n-1) = (387 + 182*sqrt(2))/17^2 for n mod 3 = 1, b = A155923.
FORMULA
Equals (26 + 7*sqrt(2))/(26 - 7*sqrt(2)) = (3 + 2*sqrt(2))/((19 + 6*sqrt(2))/17)^2 = (3 + 2*sqrt(2))*(6 - sqrt(2))^2/(6 + sqrt(2))^2.
EXAMPLE
(387 + 182*sqrt(2))/17^2 = 2.22971234723841971931...
MATHEMATICA
RealDigits[(387 + 182*Sqrt[2])/17^2, 10, 100][[1]] (* G. C. Greubel, Aug 17 2018 *)
PROG
(Magma) SetDefaultRealField(RealField(100)); (387 + 182*Sqrt(2))/17^2; // G. C. Greubel, Aug 17 2018
Search completed in 0.008 seconds
|