[go: up one dir, main page]

login
Search: a155923 -id:a155923
     Sort: relevance | references | number | modified | created      Format: long | short | data
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+17)^2 = y^2.
+10
10
0, 7, 28, 51, 88, 207, 340, 555, 1248, 2023, 3276, 7315, 11832, 19135, 42676, 69003, 111568, 248775, 402220, 650307, 1450008, 2344351, 3790308, 8451307, 13663920, 22091575, 49257868, 79639203, 128759176, 287095935, 464171332, 750463515, 1673317776
OFFSET
0,2
COMMENTS
Also values x of Pythagorean triples (x, x+17, y).
Corresponding values y of solutions (x, y) are in A155923.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a prime number in A066436, m >= 2 the associated value in A066049, the x values are given by the sequence defined by a(n) = 6*a(n-3)-a(n-6)+2p with a(0)=0, a(1)=2m+1, a(2)=6m^2-10m+4, a(3)=3p, a(4)=6m^2+10m+4, a(5)=40m^2-58m+21 (cf. A118673).
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(0)=p, b(1)=2*m^2+2m+1, b(2)=10m^2-14m+5, b(3)=5p, b(4)=10m^2+14m+5, b(5)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009
FORMULA
a(n) = 6*a(n-3) -a(n-6) +34 for n > 5; a(0)=0, a(1)=7, a(2)=28, a(3)=51, a(4)=88, a(5)=207.
G. f.: x*(7 +21*x +23*x^2 -5*x^3 -7*x^4 -5*x^5)/((1-x)*(1-6*x^3+x^6)).
MATHEMATICA
Select[Range[0, 100000], IntegerQ[Sqrt[#^2+(#+17)^2]]&] (* or *) LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 7, 28, 51, 88, 207, 340}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
PROG
(Magma) [ n: n in [0..25000000] | IsSquare(2*n*(n+17)+289) ];
(PARI) m=32; v=concat([0, 7, 28, 51, 88, 207], vector(m-6)); for(n=7, m, v[n]=6*v[n-3]-v[n-6]+34); v
CROSSREFS
Cf. A155923, A118673, A066436 (primes of the form 2*n^2-1), A066049 (2*n^2-1 is prime), A118554, A118611, A118630.
Cf. A155464 (first trisection), A155465 (second trisection), A155466 (third trisection).
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, May 12 2006
EXTENSIONS
Edited and 248755 changed to 248775 by Klaus Brockhaus, Feb 01 2009
STATUS
approved
Decimal expansion of (19+6*sqrt(2))/17.
+10
10
1, 6, 1, 6, 7, 8, 1, 2, 5, 7, 3, 0, 8, 1, 5, 1, 1, 9, 3, 6, 9, 4, 7, 1, 3, 6, 6, 7, 3, 6, 8, 1, 2, 8, 7, 3, 3, 6, 1, 2, 8, 2, 5, 3, 6, 7, 7, 8, 0, 0, 9, 9, 3, 1, 9, 9, 4, 4, 7, 1, 0, 4, 9, 5, 7, 6, 1, 4, 3, 4, 9, 9, 2, 3, 9, 8, 3, 9, 0, 7, 1, 9, 5, 9, 4, 2, 5, 4, 4, 2, 3, 8, 8, 0, 3, 4, 4, 0, 8, 4, 4, 9, 4, 7, 1
OFFSET
1,2
COMMENTS
lim_{n -> infinity} b(n)/b(n-1) = (19+6*sqrt(2))/17 for n mod 3 = {0, 2}, b = A155923.
lim_{n -> infinity} b(n)/b(n-1) = ((19+6*sqrt(2))/17)^2 for n mod 3 = {0, 2}, b = A156159.
EXAMPLE
(19+6*sqrt(2))/17 = 1.61678125730815119369...
MATHEMATICA
RealDigits[(19 + 6*Sqrt[2])/17, 10, 100][[1]] (* G. C. Greubel, Jul 05 2017 *)
PROG
(PARI) (6*sqrt(2)+19)/17 \\ Charles R Greathouse IV, Apr 25 2016
CROSSREFS
Cf. A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A156164 (decimal expansion of 17+12*sqrt(2)).
KEYWORD
nonn,cons
AUTHOR
Klaus Brockhaus, Feb 09 2009
STATUS
approved
a(n) = 6*a(n-1)-a(n-2) for n > 2; a(1) = 13, a(2) = 53.
+10
4
13, 53, 305, 1777, 10357, 60365, 351833, 2050633, 11951965, 69661157, 406014977, 2366428705, 13792557253, 80388914813, 468540931625, 2730856674937, 15916599117997, 92768738033045, 540695829080273, 3151406236448593
OFFSET
1,1
COMMENTS
lim_{n -> infinity} a(n)/a(n-1) = 3+2*sqrt(2).
FORMULA
a(n) = ((50+31*sqrt(2))*(3-2*sqrt(2))^n+(50-31*sqrt(2))*(3+2*sqrt(2))^n)/4.
G.f.: x*(13-25*x)/(1-6*x+x^2).
PROG
(PARI) {m=20; v=concat([13, 53], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-v[n-2]); v}
CROSSREFS
First trisection of A155923.
Cf. A156035 (decimal expansion of 3+2*sqrt(2)), A156157, A156158.
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Feb 09 2009
EXTENSIONS
Replaced abbreviation by sqrt(2) Klaus Brockhaus, Feb 12 2009
G.f. corrected by Klaus Brockhaus, Sep 23 2009
STATUS
approved
a(n) = 6*a(n-1)-a(n-2) for n > 2; a(1) = 17, a(2) = 85.
+10
4
17, 85, 493, 2873, 16745, 97597, 568837, 3315425, 19323713, 112626853, 656437405, 3825997577, 22299548057, 129971290765, 757528196533, 4415197888433, 25733659134065, 149986756915957, 874186882361677, 5095134537254105
OFFSET
1,1
COMMENTS
lim_{n -> infinity} a(n)/a(n-1) = 3+2*sqrt(2).
FORMULA
a(n) = ((2+sqrt(2))*(3-2*sqrt(2))^n+(2-sqrt(2))*(3+2*sqrt(2))^n)*17/4.
G.f.: 17*x*(1-x)/(1-6*x+x^2).
PROG
(PARI) {m=20; v=concat([17, 85], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-v[n-2]); v}
CROSSREFS
Second trisection of A155923. Equals 17*A001653.
Cf. A156035 (decimal expansion of 3+2*sqrt(2)), A156156, A156158.
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Feb 09 2009
EXTENSIONS
Replaced abbreviation by sqrt(2) Klaus Brockhaus, Feb 12 2009
G.f. corrected by Klaus Brockhaus, Sep 23 2009
STATUS
approved
a(n) = 6*a(n-1) - a(n-2) for n > 2; a(1) = 25, a(2) = 137.
+10
4
25, 137, 797, 4645, 27073, 157793, 919685, 5360317, 31242217, 182092985, 1061315693, 6185801173, 36053491345, 210135146897, 1224757390037, 7138409193325, 41605697769913, 242495777426153, 1413368966787005
OFFSET
1,1
FORMULA
a(n) = ((26+7*sqrt(2))*(3-2*sqrt(2))^n+(26-7*sqrt(2))*(3+2*sqrt(2))^n)/4.
G.f.: x*(25-13*x)/(1-6*x+x^2).
Limit_{n -> oo} a(n)/a(n-1) = 3+2*sqrt(2).
MATHEMATICA
LinearRecurrence[{6, -1}, {25, 137}, 30] (* Harvey P. Dale, Jan 02 2019 *)
PROG
(PARI) {m=19; v=concat([25, 137], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-v[n-2]); v}
CROSSREFS
Third trisection of A155923.
Cf. A156035 (decimal expansion of 3+2*sqrt(2)), A156156, A156157.
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Feb 09 2009
STATUS
approved
Squares of the form k^2+(k+17)^2 with integer k.
+10
4
169, 289, 625, 2809, 7225, 18769, 93025, 243049, 635209, 3157729, 8254129, 21576025, 107267449, 280395025, 732947329, 3643933225, 9525174409, 24898630849, 123786459889, 323575532569, 845820499225, 4205095700689
OFFSET
1,1
COMMENTS
Square roots of k^2+(k+17)^2 are in A155923, values k (except for -5) are in A118120.
FORMULA
a(n) = 34*a(n-3)-a(n-6)-2312 for n > 6; a(1)=169, a(2)=289, a(3)=625, a(4)=2809, a(5)=7225, a(6)=18769.
G.f.: x*(169+120*x+336*x^2-3562*x^3+336*x^4+120*x^5+169*x^6)/((1-x)*(1-34*x^3+x^6)).
Limit_{n -> oo} a(n)/a(n-3) = (17+12*sqrt(2)).
Limit_{n -> oo} a(n)/a(n-1) = ((19+6*sqrt(2))/17)^2 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = ((387+182*sqrt(2))/17^2)^2 for n mod 3 = 1.
EXAMPLE
625 = 25^2 is of the form k^2+(k+17)^2 with k = 7: 7^2+24^2 = 625. Hence 625 is in the sequence.
MATHEMATICA
LinearRecurrence[{1, 0, 34, -34, 0, -1, 1}, {169, 289, 625, 2809, 7225, 18769, 93025}, 30] (* Harvey P. Dale, Apr 22 2022 *)
PROG
(PARI) {forstep(n=-5, 1600000, [1, 3], if(issquare(a=2*n*(n+17)+289), print1(a, ", ")))}
CROSSREFS
Equals A155923^2. Cf. A156160 (first trisection), A156161 (second trisection), A156162 (third trisection).
Cf. A118120, A156035 (decimal expansion of 3+2*sqrt(2)), A156164 (decimal expansion of 17+12*sqrt(2)), A156163 (decimal expansion of (19+6*sqrt(2))/17), A157649 (decimal expansion of (387+182*sqrt(2))/17^2).
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Feb 09 2009
EXTENSIONS
G.f. corrected, fourth comment and cross-references edited by Klaus Brockhaus, Sep 23 2009
STATUS
approved
Decimal expansion of (387 + 182*sqrt(2))/17^2.
+10
3
2, 2, 2, 9, 7, 1, 2, 3, 4, 7, 2, 3, 8, 4, 1, 9, 7, 1, 9, 3, 1, 4, 5, 5, 8, 2, 9, 6, 9, 0, 7, 1, 4, 5, 5, 0, 2, 7, 6, 7, 0, 5, 9, 7, 9, 6, 9, 5, 0, 1, 8, 8, 7, 5, 1, 9, 6, 5, 9, 3, 6, 7, 2, 0, 8, 1, 0, 7, 7, 2, 7, 0, 2, 6, 9, 9, 3, 2, 0, 0, 0, 3, 7, 0, 5, 0, 8, 8, 3, 4, 3, 4, 1, 7, 4, 0, 7, 4, 9, 5, 6, 3, 2, 4, 3
OFFSET
1,1
COMMENTS
Lim_{n -> infinity} b(n)/b(n-1) = (387 + 182*sqrt(2))/17^2 for n mod 3 = 1, b = A155923.
LINKS
FORMULA
Equals (26 + 7*sqrt(2))/(26 - 7*sqrt(2)) = (3 + 2*sqrt(2))/((19 + 6*sqrt(2))/17)^2 = (3 + 2*sqrt(2))*(6 - sqrt(2))^2/(6 + sqrt(2))^2.
EXAMPLE
(387 + 182*sqrt(2))/17^2 = 2.22971234723841971931...
MATHEMATICA
RealDigits[(387 + 182*Sqrt[2])/17^2, 10, 100][[1]] (* G. C. Greubel, Aug 17 2018 *)
PROG
(PARI) (387 + 182*sqrt(2))/17^2 \\ G. C. Greubel, Aug 17 2018
(Magma) SetDefaultRealField(RealField(100)); (387 + 182*Sqrt(2))/17^2; // G. C. Greubel, Aug 17 2018
CROSSREFS
Cf. A118120, A155923, A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A156163 (decimal expansion of (19+6*sqrt(2))/17).
KEYWORD
cons,nonn
AUTHOR
Klaus Brockhaus, Mar 11 2009
STATUS
approved

Search completed in 0.008 seconds