[go: up one dir, main page]

login
Search: a142463 -id:a142463
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = n*(n+5)/2.
+10
67
0, 3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173, 1222, 1272
OFFSET
0,2
COMMENTS
If X is an n-set and Y a fixed (n-3)-subset of X then a(n-3) is equal to the number of 2-subsets of X intersecting Y. - Milan Janjic, Aug 15 2007
Bisection of A165157. - Jaroslav Krizek, Sep 05 2009
a(n) is the number of (w,x,y) having all terms in {0,...,n} and w=x+y-1. - Clark Kimberling, Jun 02 2012
Numbers m >= 0 such that 8m+25 is a square. - Bruce J. Nicholson, Jul 26 2017
a(n-1) = 3*(n-1) + (n-1)*(n-2)/2 is the number of connected, loopless, non-oriented, multi-edge vertex-labeled graphs with n edges and 3 vertices. Labeled multigraph analog of A253186. There are 3*(n-1) graphs with the 3 vertices on a chain (3 ways to label the middle graph, n-1 ways to pack edges on one of connections) and binomial(n-1,2) triangular graphs (one way to label the graphs, pack 1 or 2 or ...n-2 on the 1-2 edge, ...). - R. J. Mathar, Aug 10 2017
a(n) is also the number of vertices of the quiver for PGL_{n+1} (see Shen). - Stefano Spezia, Mar 24 2020
Starting from a(2) = 7, this is the 4th column of the array: natural numbers written by antidiagonals downwards. See the illustration by Kival Ngaokrajang and the cross-references. - Andrey Zabolotskiy, Dec 21 2021
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.
LINKS
Karl Dilcher and Larry Ericksen, Polynomials and algebraic curves related to certain binary and b-ary overpartitions, arXiv:2405.12024 [math.CO], 2024. See p. 10.
Kival Ngaokrajang, Illustration from A000027 (contains errors).
FORMULA
G.f.: x*(3-2*x)/(1-x)^3.
a(n) = A027379(n), n > 0.
a(n) = A126890(n,2) for n > 1. - Reinhard Zumkeller, Dec 30 2006
a(n) = A000217(n) + A005843(n). - Reinhard Zumkeller, Sep 24 2008
If we define f(n,i,m) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-m-j), then a(n) = -f(n,n-1,3), for n >= 1. - Milan Janjic, Dec 20 2008
a(n) = A167544(n+8). - Philippe Deléham, Nov 25 2009
a(n) = a(n-1) + n + 2 with a(0)=0. - Vincenzo Librandi, Aug 07 2010
a(n) = Sum_{k=1..n} (k+2). - Gary Detlefs, Aug 10 2010
a(n) = A034856(n+1) - 1 = A000217(n+2) - 3. - Jaroslav Krizek, Sep 05 2009
Sum_{n>=1} 1/a(n) = 137/150. - R. J. Mathar, Jul 14 2012
a(n) = 3*n + A000217(n-1) = 3*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = Sum_{i=3..n+2} i. - Wesley Ivan Hurt, Jun 28 2013
a(n) = 3*A000217(n) - 2*A000217(n-1). - Bruno Berselli, Dec 17 2014
a(n) = A046691(n) + 1. Also, a(n) = A052905(n-1) + 2 = A055999(n-1) + 3 for n>0. - Andrey Zabolotskiy, May 18 2016
E.g.f.: x*(6+x)*exp(x)/2. - G. C. Greubel, Apr 05 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/5 - 47/150. - Amiram Eldar, Jan 10 2021
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = -5*cos(sqrt(33)*Pi/2)/(4*Pi).
Product_{n>=1} (1 + 1/a(n)) = 15*cos(sqrt(17)*Pi/2)/(2*Pi). (End)
MATHEMATICA
f[n_]:=n*(n+5)/2; f[Range[0, 50]] (* Vladimir Joseph Stephan Orlovsky, Feb 10 2011 *)
PROG
(PARI) a(n)=n*(n+5)/2 \\ Charles R Greathouse IV, Sep 24 2015
(Magma) [n*(n+5)/2: n in [0..50]]; // G. C. Greubel, Apr 05 2019
(Sage) [n*(n+5)/2 for n in (0..50)] # G. C. Greubel, Apr 05 2019
CROSSREFS
a(n) = A095660(n+1, 2): third column of (1, 3)-Pascal triangle.
Row n=2 of A255961.
KEYWORD
nonn,easy
AUTHOR
Barry E. Williams, Jun 14 2000
STATUS
approved
Triangle read by rows: T(n, k) = 2*n*k + n + k - 1.
+10
34
3, 6, 11, 9, 16, 23, 12, 21, 30, 39, 15, 26, 37, 48, 59, 18, 31, 44, 57, 70, 83, 21, 36, 51, 66, 81, 96, 111, 24, 41, 58, 75, 92, 109, 126, 143, 27, 46, 65, 84, 103, 122, 141, 160, 179, 30, 51, 72, 93, 114, 135, 156, 177, 198, 219, 33, 56, 79, 102, 125, 148, 171, 194, 217, 240, 263
OFFSET
1,1
COMMENTS
Rearrangement of A153238, numbers n such that 2*n+3 is not prime (we have 2*T(n,k) + 3 = (2*n+1)*(2*k+1), as 2*n+3 is odd it consists of (at least) two odd factors and all such factors appear by definition).
LINKS
Vincenzo Librandi, Rows n = 1..100, flattened
Mutsumi Suzuki Vincenzo Librandi's method for sequential primes (Librandi's description in Italian).
FORMULA
Sum_{k=1..n} T(n,k) = n*(2*n^2 + 5*n - 1)/2 = A144640(n). - G. C. Greubel, Mar 01 2021
G.f.: x*y*(3 + 2*x*y + 2*x^3*y^2 - x^2*y*(6 + y))/((1 - x)^2*(1 - x*y)^3). - Stefano Spezia, Nov 04 2024
EXAMPLE
Triangle begins:
3;
6, 11;
9, 16, 23;
12, 21, 30, 39;
15, 26, 37, 48, 59;
18, 31, 44, 57, 70, 83;
21, 36, 51, 66, 81, 96, 111;
24, 41, 58, 75, 92, 109, 126, 143;
27, 46, 65, 84, 103, 122, 141, 160, 179;
...
MAPLE
A144562:= (n, k) -> 2*n*k +n +k -1; seq(seq(A144562(n, k), k=1..n), n=1..12); # G. C. Greubel, Mar 01 2021
MATHEMATICA
T[n_, k_]:= 2*n*k +n +k -1; Table[T[n, k], {n, 11}, {k, n}]//Flatten
PROG
(Magma) [2*n*k+n+k-1: k in [1..n], n in [1..11]]; /* or, see example: */ [[2*n*k+n+k-1: k in [1..n]]: n in [1..9]]; // Bruno Berselli, Dec 04 2011
(PARI) T(n, k)=2*n*k+n+k-1 \\ Charles R Greathouse IV, Dec 28 2011
(Sage) flatten([[2*n*k+n+n-1 for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 01 2021
CROSSREFS
Main diagonal gives A142463.
T(2n,n) gives A180863(n+1).
KEYWORD
nonn,easy,tabl
AUTHOR
Vincenzo Librandi, Jan 06 2009
EXTENSIONS
Edited by Ray Chandler, Jan 07 2009
STATUS
approved
Pinwheel numbers: a(n) = 2*n^2 + 6*n + 1.
+10
21
1, 9, 21, 37, 57, 81, 109, 141, 177, 217, 261, 309, 361, 417, 477, 541, 609, 681, 757, 837, 921, 1009, 1101, 1197, 1297, 1401, 1509, 1621, 1737, 1857, 1981, 2109, 2241, 2377, 2517, 2661, 2809, 2961, 3117, 3277, 3441, 3609, 3781, 3957, 4137, 4321, 4509, 4701, 4897
OFFSET
0,2
COMMENTS
Nonnegative integers m such that 2*m + 7 is a square. - Vincenzo Librandi, Mar 01 2013
Numbers of the form 4*(h+1)*(2*h-1) + 1, where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ... . - Bruno Berselli, Feb 03 2017
a(n) is also the number of vertices of the Aztec diamond AZ(n) (see Lemma 2.1 of the Imran et al. paper). - Emeric Deutsch, Sep 23 2017
REFERENCES
M. Imran and S. Hayat, On computation of topological indices of Aztec diamonds, Sci. Int. (Lahore), Vol. 26(4), 2014, pp. 1407-1412. - Emeric Deutsch, Sep 23 2017
LINKS
Author?, figure. [Wayback Machine link]
Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
FORMULA
a(n) = 4*n + a(n-1) + 4 for n > 0, a(0)=1. - Vincenzo Librandi, Aug 07 2010
G.f.: (1 + 6*x - 3*x^2)/(1-x)^3. - Arkadiusz Wesolowski, Dec 24 2011
a(n) = 2*a(n-1) - a(n-2) + 4. - Vincenzo Librandi, Mar 01 2013
a(n) = Hyper2F1([-2, n], [1], -2). - Peter Luschny, Aug 02 2014
Sum_{n>=0} 1/a(n) = 1/3 + Pi*tan(sqrt(7)*Pi/2)/(2*sqrt(7)). - Amiram Eldar, Dec 13 2022
From Elmo R. Oliveira, Nov 16 2024: (Start)
E.g.f.: exp(x)*(1 + 8*x + 2*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MATHEMATICA
Table[2 n^2 + 6 n + 1, {n, 0, 46}] (* Zerinvary Lajos, Jul 10 2009 *)
LinearRecurrence[{3, -3, 1}, {1, 9, 21}, 50] (* Harvey P. Dale, Oct 01 2018 *)
PROG
(PARI) { for (n=0, 1000, write("b059993.txt", n, " ", 2*n^2 + 6*n + 1); ) } \\ Harry J. Smith, Jul 01 2009
(Magma) [2*n^2+6*n+1: n in [0..50]]; // Vincenzo Librandi, Mar 01 2013
(Magma) I:=[1, 9]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2)+4: n in [1..50]]; // Vincenzo Librandi, Mar 01 2013
CROSSREFS
Cf. numbers n such that 2*n + 2*k + 1 is a square: A046092 (k=0), A142463 (k=1), A090288 (k=2), this sequence (k=3), A139570 (k=4), A222182 (k=5), A181510 (k=6).
KEYWORD
nonn,easy,changed
AUTHOR
Naohiro Nomoto, Mar 14 2001
STATUS
approved
Numbers m such that 2*m + 11 is a square.
+10
8
-5, -1, 7, 19, 35, 55, 79, 107, 139, 175, 215, 259, 307, 359, 415, 475, 539, 607, 679, 755, 835, 919, 1007, 1099, 1195, 1295, 1399, 1507, 1619, 1735, 1855, 1979, 2107, 2239, 2375, 2515, 2659, 2807, 2959, 3115, 3275, 3439, 3607, 3779, 3955, 4135, 4319, 4507, 4699
OFFSET
1,1
COMMENTS
Except the first term, main diagonal of A155546. - Vincenzo Librandi, Mar 04 2013
FORMULA
G.f.: -x*(5 - 14*x + 5*x^2)/(1-x)^3.
a(n) = a(-n+1) = 2*n^2 - 2*n - 5.
a(n) = A046092(n-1) - 5.
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(11)*Pi/2)/(2*sqrt(11)). - Amiram Eldar, Dec 23 2022
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: exp(x)*(2*x^2 - 5) + 5.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
MATHEMATICA
Table[2 n^2 - 2 n - 5, {n, 50}]
PROG
(Magma) [m: m in [-5..5000] | IsSquare(2*m+11)];
(Maxima) makelist(coeff(taylor(-(5-14*x+5*x^2)/(1-x)^3, x, 0, n), x, n), n, 0, 50);
(Magma) I:=[-5, -1, 7]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Mar 04 2013
(PARI) a(n)=2*n^2-2*n-5 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Cf. numbers n such that 2*n + 2*k + 1 is a square: A046092 (k=0), A142463 (k=1), A090288 (k=2), A059993 (k=3), A139570 (k=4), this sequence (k=5), A181510 (k=6).
Cf. A005408 (square roots of 2*a(n)+11), A155546.
After a(2), subsequence of A168489.
KEYWORD
sign,easy,changed
AUTHOR
Bruno Berselli, Mar 01 2013
STATUS
approved
a(n) = 2*n^2 + 8*n + 5.
+10
7
5, 15, 29, 47, 69, 95, 125, 159, 197, 239, 285, 335, 389, 447, 509, 575, 645, 719, 797, 879, 965, 1055, 1149, 1247, 1349, 1455, 1565, 1679, 1797, 1919, 2045, 2175, 2309, 2447, 2589, 2735, 2885, 3039, 3197, 3359, 3525, 3695, 3869, 4047, 4229, 4415, 4605
OFFSET
0,1
COMMENTS
Also, numbers m such that 2*m + 6 is a square.
All the terms end with a digit in {5, 7, 9}, or equivalently, are congruent to {5, 7, 9} mod 10. - Stefano Spezia, Aug 05 2021
FORMULA
From Vincenzo Librandi, Apr 13 2016: (Start)
G.f.: (5-x^2)/(1-x)^3.
a(n) = 2*(n+2)^2 - 3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: exp(x)*(5 + 10*x + 2*x^2). - Stefano Spezia, Aug 03 2021
MATHEMATICA
Table[2 n^2 + 8 n + 5, {n, 0, 50}] (* Vincenzo Librandi, Apr 13 2016 *)
LinearRecurrence[{3, -3, 1}, {5, 15, 29}, 50] (* Harvey P. Dale, Jan 18 2017 *)
PROG
(Magma) [2*n^2+8*n+5: n in [0..60]];
(Magma) [n: n in [0..6000] | IsSquare(2*n+6)];
(PARI) lista(nn) = for(n=0, nn, print1(2*n^2+8*n+5, ", ")); \\ Altug Alkan, Apr 10 2016
(Sage) [2*n^2 + 8*n + 5 for n in [0..46]] # Stefano Spezia, Aug 04 2021
CROSSREFS
Cf. numbers n such that 2*n + k is a perfect square: A093328 (k=-6), A097080 (k=-5), no sequence (k=-4), A051890 (k=-3), A058331 (k=-2), A001844 (k=-1), A001105 (k=0), A046092 (k=1), A056222 (k=2), A142463 (k=3), A054000 (k=4), A090288 (k=5), this sequence (k=6), A059993 (k=7), A147973 (k=8), A139570 (k=9), no sequence (k=10), A222182 (k=11), A152811 (k=12), A181570 (k=13).
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Changed offset from 1 to 0, adapted formulas and programs by Bruno Berselli, Apr 13 2016
STATUS
approved
Triangle read by rows where T(m,n) = 2m*n + m + n + 1.
+10
6
5, 8, 13, 11, 18, 25, 14, 23, 32, 41, 17, 28, 39, 50, 61, 20, 33, 46, 59, 72, 85, 23, 38, 53, 68, 83, 98, 113, 26, 43, 60, 77, 94, 111, 128, 145, 29, 48, 67, 86, 105, 124, 143, 162, 181, 32, 53, 74, 95, 116, 137, 158, 179, 200, 221, 35, 58, 81, 104, 127, 150, 173, 196, 219, 242, 265
OFFSET
1,1
COMMENTS
First column: A016789, second column: A016885, third column: A017029, fourth column: A017221, fifth column: A017461. - Vincenzo Librandi, Nov 21 2012
LINKS
Vincenzo Librandi, Rows n = 1..100, flattened
FORMULA
Sum_{n=1..m} T(m, n) = m*(2*m+3)*(m+1)/2 = A160378(n+1) (row sums). - R. J. Mathar, Jan 15 2009, Jan 05 2011
From G. C. Greubel, Oct 14 2023: (Start)
T(n, n) = A001844(n).
T(n, n-1) = A001105(n), n >= 2.
T(n, n-2) = A142463(n-1), n >= 3.
T(n, n-3) = (-1)*A147973(n+2), n >= 4.
Sum_{k=1..n} (-1)^k*T(n, k) = (-1)^n*A007742(floor((n+1)/2)).
G.f.: x*y*(5 - 2*x - 2*x*y - 2*x^2*y + x^2*y^2)/((1-x)^2*(1-x*y)^3). (End)
EXAMPLE
Triangle begins:
5;
8, 13;
11, 18, 25;
14, 23, 32, 41;
17, 28, 39, 50, 61;
20, 33, 46, 59, 72, 85;
23, 38, 53, 68, 83, 98, 113;
26, 43, 60, 77, 94, 111, 128, 145;
29, 48, 67, 86, 105, 124, 143, 162, 181;
32, 53, 74, 95, 116, 137, 158, 179, 200, 221; etc.
MATHEMATICA
T[n_, k_]:= 2 n*k + n + k + 1; Table[T[n, k], {n, 11}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 21 2012 *)
PROG
(Magma) [2*n*k + n + k + 1: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 21 2012
(SageMath) flatten([[2*n*k+n+k+1 for k in range(1, n+1)] for n in range(1, 13)]) # G. C. Greubel, Oct 14 2023
CROSSREFS
Columns k: A016789 (k=1), A016885 (k=2), A017029 (k=3), A017221 (k=4), A017461 (k=5).
KEYWORD
nonn,tabl,easy
AUTHOR
Vincenzo Librandi, Jan 13 2009
STATUS
approved
Second differences of A000463; first differences of A188652.
+10
6
1, 1, -3, 7, -11, 17, -23, 31, -39, 49, -59, 71, -83, 97, -111, 127, -143, 161, -179, 199, -219, 241, -263, 287, -311, 337, -363, 391, -419, 449, -479, 511, -543, 577, -611, 647, -683, 721, -759, 799, -839, 881, -923, 967, -1011, 1057, -1103, 1151, -1199, 1249, -1299, 1351, -1403, 1457, -1511, 1567, -1623, 1681, -1739, 1799, -1859, 1921, -1983, 2047, -2111, 2177, -2243, 2311, -2379, 2449, -2519, 2591, -2663, 2737, -2811
OFFSET
1,3
FORMULA
a(2*n) = a(2*n-1)+4*n^2-2*n-2, a(2*n+1) = -a(2*n)-2*n.
a(2*n) = A056220(n), a(2*n-1) = -A142463(n).
Abs(a(n)) = A047838(n) for n > 1.
a(n) = A188652(n+1)-A188652(n) = A000463(n+2)-2*A000463(n+1)+A000463(n).
G.f.: x*(-1-3*x+x^2+x^3) / ((x-1)*(1+x)^3). - R. J. Mathar, Apr 14 2011
a(n) = a(-n) = ((2*n^2-5)*(-1)^n+1)/4. - Bruno Berselli, Sep 14 2011
E.g.f.: 1 + ((x^2 - x - 2)*cosh(x) - (x^2 - x - 3)*sinh(x))/2. - Stefano Spezia, Jul 08 2023
MATHEMATICA
LinearRecurrence[{-2, 0, 2, 1}, {1, 1, -3, 7}, 75] (* Jean-François Alcover, Dec 16 2021 *)
PROG
(Haskell)
a188653 n = a188653_list !! (n-1)
a188653_list = zipWith (-) (tail a188652_list) a188652_list
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Reinhard Zumkeller, Apr 13 2011
STATUS
approved
a(n) = 2*n^2 - 4*n + 4.
+10
6
2, 4, 10, 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, 340, 394, 452, 514, 580, 650, 724, 802, 884, 970, 1060, 1154, 1252, 1354, 1460, 1570, 1684, 1802, 1924, 2050, 2180, 2314, 2452, 2594, 2740, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4052, 4234, 4420, 4610, 4804, 5002, 5204, 5410, 5620
OFFSET
1,1
COMMENTS
Numbers n such that 2*n - 4 is a perfect square.
For n > 2, the number of square a(n)-gonal numbers is finite. - Muniru A Asiru, Oct 16 2016
FORMULA
a(n) = 2*A002522(n-1).
G.f.: 2*x*(1 - x + 2*x^2)/(1 - x)^3. - Ilya Gutkovskiy, Apr 11 2016
Sum_{n>=1} 1/a(n) = (1 + Pi*coth(Pi))/4 = 1.038337023734290587067... . - Vaclav Kotesovec, Apr 11 2016
a(n) = A005893(n-1), n > 1. - R. J. Mathar, Apr 12 2016
a(n) = 2 + 2*(n-1)^2. - Tyler Skywalker, Jul 21 2016
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: 2*(exp(x)*(x^2 - x + 2) - 2).
a(n) = 2*A160457(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
EXAMPLE
a(1) = 2*1^2 - 4*1 + 4 = 2.
MATHEMATICA
Table[2 n^2 - 4 n + 4, {n, 54}] (* Michael De Vlieger, Apr 11 2016 *)
LinearRecurrence[{3, -3, 1}, {2, 4, 10}, 60] (* Harvey P. Dale, Jul 18 2023 *)
PROG
(Magma) [ 2*n^2 - 4*n + 4: n in [1..60]];
(Magma) [ n: n in [1..6000] | IsSquare(2*n-4)];
(PARI) x='x+O('x^99); Vec(2*x*(1-x+2*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
(PARI) a(n)=2*n^2-4*n+4 \\ Charles R Greathouse IV, Apr 11 2016
CROSSREFS
Cf. A002522, numbers n such that 2*n + k is a perfect square: no sequence (k = -9), A255843 (k = -8), A271649 (k = -7), A093328 (k = -6), A097080 (k = -5), this sequence (k = -4), A051890 (k = -3), A058331 (k = -2), A001844 (k = -1), A001105 (k = 0), A046092 (k = 1), A056222 (k = 2), A142463 (k = 3), A054000 (k = 4), A090288 (k = 5), A268581 (k = 6), A059993 (k = 7), (-1)*A147973 (k = 8), A139570 (k = 9), A271625 (k = 10), A222182 (k = 11), A152811 (k = 12), A181510 (k = 13), A161532 (k = 14), no sequence (k = 15).
KEYWORD
nonn,easy,changed
AUTHOR
STATUS
approved
The Wiener index of a chain of n triangles (i.e., joined like VVV..VV; here V is a triangle!).
+10
5
3, 14, 37, 76, 135, 218, 329, 472, 651, 870, 1133, 1444, 1807, 2226, 2705, 3248, 3859, 4542, 5301, 6140, 7063, 8074, 9177, 10376, 11675, 13078, 14589, 16212, 17951, 19810, 21793, 23904, 26147, 28526, 31045, 33708, 36519, 39482, 42601, 45880, 49323, 52934
OFFSET
1,1
COMMENTS
The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph.
Row 2 of the convolution array A213752. - Clark Kimberling, Jun 20 2012
Also the circuit rank of the (n+2) X (n+2) bishop graph. - Eric W. Weisstein, May 10 2019
LINKS
Eric Weisstein's World of Mathematics, Bishop Graph
Eric Weisstein's World of Mathematics, Circuit Rank
FORMULA
a(n) = n*(1 + 6*n + 2*n^2)/3.
G.f.: z*(3 + 2*z - z^2)/(1-z)^4.
a(n) = Sum_{k=1..n} k*A143940(n,k).
a(n) = Sum_{k=1..n} A142463(k). - Richard R. Forberg, Jan 09 2015
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Wesley Ivan Hurt, Apr 08 2015
E.g.f.: exp(x)*x*(9 + 12*x + 2*x^2)/3. - Stefano Spezia, Jan 03 2022
EXAMPLE
a(2)=14 because in the graph VV (V is a triangle!) we have 6 distances equal to 1 and 4 distances equal to 2.
MAPLE
seq((1/3)*n*(1+6*n+2*n^2), n=1..43);
MATHEMATICA
CoefficientList[Series[(3+2*x-x^2)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 03 2012 *)
LinearRecurrence[{4, -6, 4, -1}, {3, 14, 37, 76}, 50] (* Harvey P. Dale, Sep 06 2023 *)
PROG
(Magma) [n*(1+6*n+2*n^2)/3 : n in [1..40]]; // Wesley Ivan Hurt, Apr 08 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Sep 06 2008
STATUS
approved
Binomial transform of A005563.
+10
5
0, 3, 14, 48, 144, 400, 1056, 2688, 6656, 16128, 38400, 90112, 208896, 479232, 1089536, 2457600, 5505024, 12255232, 27131904, 59768832, 131072000, 286261248, 622854144, 1350565888, 2919235584, 6291456000, 13522436096
OFFSET
0,2
COMMENTS
The numbers appear on the diagonal of a table T(n,k), where the left column contains the elements of A005563, and further columns are recursively T(n,k) = T(n,k-1)+T(n-1,k-1):
....0....-1.....0.....0.....0.....0.....0.....0.....0.....0.
....3.....3.....2.....2.....2.....2.....2.....2.....2.....2.
....8....11....14....16....18....20....22....24....26....28.
...15....23....34....48....64....82...102...124...148...174.
...24....39....62....96...144...208...290...392...516...664.
...35....59....98...160...256...400...608...898..1290..1806.
...48....83...142...240...400...656..1056..1664..2562..3852.
...63...111...194...336...576...976..1632..2688..4352..6914.
...80...143...254...448...784..1360..2336..3968..6656.11008.
...99...179...322...576..1024..1808..3168..5504..9472.16128.
..120...219...398...720..1296..2320..4128..7296.12800.22272.
The second column is A142463, the third A060626, the fourth essentially A035008 and the fifth essentially A016802. Transposing the array gives A005563 and its higher order differences in the individual rows.
FORMULA
G.f.: x*(-3+4*x)/(2*x-1)^3. - R. J. Mathar, Dec 11 2010
a(n) = 2^(n-2)*n*(5+n). - R. J. Mathar, Dec 11 2010
a(n) = A127276(n) - A127276(n+1).
a(n+1)-a(n) = A084266(n+1).
a(n+2) = 16*A058396(n) for n > 0.
a(n) = 2*a(n-1) + A001792(n).
a(n) = A001793(n) - 2^(n-1) for n > 0. - Brad Clardy, Mar 02 2012
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} (k+3) * C(n-1,i). - Wesley Ivan Hurt, Sep 20 2017
From Amiram Eldar, Aug 13 2022: (Start)
Sum_{n>=1} 1/a(n) = 1322/75 - 124*log(2)/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = 132*log(3/2)/5 - 782/75. (End)
MATHEMATICA
LinearRecurrence[{6, -12, 8}, {0, 3, 14}, 30] (* Harvey P. Dale, Oct 19 2015 *)
PROG
(Magma) [2^(n-2)*n*(5+n) : n in [0..30]]; // Vincenzo Librandi, Oct 08 2011
(PARI) a(n)=n*(n+5)<<(n-2) \\ Charles R Greathouse IV, Sep 21 2017
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Dec 06 2010
STATUS
approved

Search completed in 0.018 seconds