[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a131573 -id:a131573
     Sort: relevance | references | number | modified | created      Format: long | short | data
Positive numbers whose square starts with exactly 3 identical digits.
+0
3
149, 298, 334, 472, 667, 745, 882, 1054, 1055, 1056, 1057, 1058, 1490, 1491, 1492, 1493, 1825, 1826, 1827, 2108, 2109, 2356, 2581, 2788, 2789, 2980, 2981, 3161, 3162, 3332, 3333, 3335, 3336, 3337, 3338, 3339, 3340, 3341, 3342, 3343, 3344, 3345, 3346
OFFSET
1,1
COMMENTS
If m is a term 10*m is another term.
2357 is the first term of A131573 that is not in this sequence (see Example section), the next ones are 2582, 3334, ...
EXAMPLE
149 is a term because 149^2 = 22201 starts with three 2's.
2357 is not a term because 2357^2 = 5555449 starts with four 5's.
MATHEMATICA
Select[Range[32, 3350], (d = IntegerDigits[#^2])[[1]] == d[[2]] == d[[3]] != d[[4]] &] (* Amiram Eldar, Aug 06 2021 *)
PROG
(Python)
def ok(n): s = str(n*n); return len(s) > 3 and s[0] == s[1] == s[2] != s[3]
print(list(filter(ok, range(3347)))) # Michael S. Branicky, Aug 06 2021
CROSSREFS
Subsequence of A131573.
Cf. A039685 (similar, with "ends"), A346812 (similar, with 2), A346892.
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Aug 06 2021
STATUS
approved
Numbers whose square starts with exactly 4 identical digits.
+0
2
2357, 2582, 3334, 4714, 5774, 6667, 8165, 8819, 9428, 10542, 10543, 10544, 10545, 14907, 14908, 14909, 18257, 18258, 18259, 21081, 21082, 21083, 23570, 23571, 25819, 25820, 27888, 27889, 29813, 29814, 31622, 33332, 33333, 33335, 33336, 33337, 33338, 33339, 33340, 33341, 33342
OFFSET
1,1
COMMENTS
If m is a term, 10*m is another term.
Differs from A132391 where only at least 4 identical digits are required; indeed, 10541 is the first term of A132391 that is not in this sequence (see Example section), the next one is 33346.
EXAMPLE
2357 is a term because 2357^2 = 5555449 starts with four 5's.
10541 is not a term because 10541^2 = 111112681 starts with five 1's.
MATHEMATICA
q[n_] := SameQ @@ (d = IntegerDigits[n^2])[[1 ;; 4]] && d[[5]] != d[[1]]; Select[Range[100, 33350], q] (* Amiram Eldar, Aug 08 2021 *)
PROG
(Python)
def ok(n):
s = str(n*n)
return len(s) > 4 and s[0] == s[1] == s[2] == s[3] != s[4]
print(list(filter(ok, range(33343)))) # Michael S. Branicky, Aug 08 2021
CROSSREFS
Supersequences: A131573, A132391.
Similar with: A346812 (2 digits), A346891 (3 digits).
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Aug 08 2021
STATUS
approved
Numbers whose square starts with 4 identical digits.
+0
4
2357, 2582, 3334, 4714, 5774, 6667, 8165, 8819, 9428, 10541, 10542, 10543, 10544, 10545, 14907, 14908, 14909, 18257, 18258, 18259, 21081, 21082, 21083, 23570, 23571, 25819, 25820, 27888, 27889, 29813, 29814, 31622, 33332, 33333
OFFSET
1,1
LINKS
EXAMPLE
Example: 2357^2 = 5555449.
MAPLE
R:= NULL: count:= 0:
for d from 1 while count < 100 do
for i from 1 to 9 do
L:= i*1111*10^d;
X:= [$ceil(sqrt(L)) .. floor(sqrt(L+10^d-1))];
m:= nops(X);
if m > 0 then
count:= count+nops(X);
R:= R, op(X);
fi
od od:
R; # Robert Israel, Mar 12 2021
MATHEMATICA
Select[Range[10, 50000], Length[Union[Take[IntegerDigits[ #^2], 4]]] == 1 & ]
(* or *)
(* Here's a more generic Mathematica program that calculates the first q terms of squares starting with n identical digits *)
n=4; q=30; t=Table[(10^n-1)*i/9, {i, 1, 9}]; u=Sqrt[Union[t, 10*t]];
v=Sqrt[Union[t+1, 10*(t+1)]]; k=1; While[s=Sort[Flatten[Table[Union
[Table[Range[Ceiling[10^j*u[[i]]], f=10^j*v[[i]]; If[IntegerQ[f],
f=f-1]; Floor[f]], {i, 1, 18}]], {j, 0, k}]]]; Length[s]<q, k++ ]; Take[s, q]
(* Hans Havermann, Aug 30 2007 *)
PROG
(Python)
def aupto(limit):
alst = []
for m in range(34, limit+1):
if len(set(str(m*m)[:4])) == 1: alst.append(m)
return alst
print(aupto(33333)) # Michael S. Branicky, Mar 12 2021
CROSSREFS
KEYWORD
nonn,base,look
AUTHOR
Jonathan Vos Post, Aug 29 2007
STATUS
approved
Smallest number whose n-th power begins with precisely n identical digits (in base ten).
+0
2
1, 15, 322, 167, 6444, 32183, 7306, 225418, 6551032, 683405939, 7074698775, 26331754107, 844494314469, 11303028458639, 251188643150958, 93364101391902, 16114920282762613, 239390020079624346, 191165654339590395
OFFSET
1,2
COMMENTS
Main diagonal of array A[k,n] = n-th positive integer whose square (base 10) begins with k identical digits. M. F. Hasler points out that numbers whose squares start with 4 identical digits; numbers whose squares start with 5 identical digits; and numbers whose squares start with 6 identical digits; are already in the OEIS (along with A119511, A119998).
For the less stringent condition of the n-th power beginning with at least n identical digits, replace the numbers at indices {14,23,27,49,53} with:
14 1247955519394
23 2237770493401064693452
27 119060799886319434107761934
49 1389495494373137637129985217353011622113046714491
53 6489094571807720876517179893325894917102663447322282, respectively.
LINKS
FORMULA
a(n) = Min{k>0 such that k^n begins with precisely n identical leftmost digits (base ten)}.
EXAMPLE
a(1) = 1 because 1^1 = 1 begins with precisely 1 identical digit.
a(2) = 15 because 15^2 = 225 begins with precisely 2 identical digits.
a(3) = 322 because 322^3 = 33386248 begins with precisely 3 identical digits.
a(4) = 167 because 167^4 = 777796321 begins with precisely 4 identical digits.
a(5) = 6444 because 6444^5 = 11111627111310388224 begins with precisely 5 identical digits.
CROSSREFS
See A132392 for another version.
KEYWORD
base,nonn
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Jul 01 2008 at the suggestion of R. J. Mathar
STATUS
approved
a(n) = the smallest positive number, not ending in 0, whose square has a substring of exactly n identical digits.
+0
1
1, 12, 38, 1291, 10541, 57735, 364585, 1197219, 50820359, 169640142, 298142397, 4472135955, 1490711985, 2185812841434
OFFSET
1,2
EXAMPLE
a(1)=1: 1^2=1 (1 one), a(1)=A119511(1)=A119998(1)
a(2)=12: 12^2=144 (2 fours)
a(3)=38: 38^2=1444 (3 fours)
a(4)=1291: 1291^2=1666681 (4 sixes)
a(5)=10541: 10541^2=111112681 (5 ones), a(5)=A119511(5)=A119998(5)
a(6)=57735: 57735^2=3333330225 (6 threes), a(6)=A119511(6)=A119998(6)
a(7)=364585: 364585^2=132922222225 (7 twos)
a(8)=1197219: 1197219^2=1433333333961 (8 threes)
a(9)=50820359: 50820359^2=2582708888888881 (9 eights)
a(10)=169640142: 169640142^2=28777777777780164 (10 sevens)
a(11)=298142397: 298142397^2=88888888888905609 (11 eights), a(11)=A119511(11)=A119998(11)
a(12)=4472135955: 4472135955^2=20000000000003762025 (12 zeros)
a(13)=1490711985: 1490711985^2=2222222222222640225 (13 twos), a(13)=A119511(13)=A119998(12,13).
MATHEMATICA
a[n_] := Block[{k=1}, While[Mod[k, 10] == 0 || !MemberQ[Length /@ Split[ IntegerDigits[ k^2]], n], k++]; k]; Array[a, 7] (* Giovanni Resta, Apr 11 2017 *)
KEYWORD
base,nonn,more
AUTHOR
Zak Seidov, Nov 10 2009
EXTENSIONS
a(14) from Giovanni Resta, Apr 11 2017
STATUS
approved
Numbers whose square starts with 5 identical digits.
+0
2
10541, 33334, 47141, 57735, 66667, 105409, 105410, 105411, 105412, 105413, 149071, 149072, 149073, 182574, 182575, 182576, 210818, 210819, 235702, 235703, 258198, 258199, 278886, 278887, 298141, 298142, 316227, 333332, 333333, 333334
OFFSET
1,1
EXAMPLE
10541^2=111112681, 33334^2=1111155556.
MATHEMATICA
Select[ Range[ 100, 500000 ], Length[ Union[ Take[ IntegerDigits[ #^2 ], 5 ] ] ] == 1 & ] (Jonathan Vos Post, Aug 29 2007)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Zak Seidov, Aug 04 2006
STATUS
approved

Search completed in 0.006 seconds