[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a131450 -id:a131450
     Sort: relevance | references | number | modified | created      Format: long | short | data
Irregular rows of odd numbers that produce n even numbers in their Collatz iteration.
+10
6
5, 3, 21, 13, 85, 17, 53, 11, 35, 113, 341, 7, 23, 69, 75, 213, 227, 15, 45, 141, 151, 453, 1365, 9, 29, 93, 277, 301, 853, 909, 19, 61, 181, 201, 565, 605, 1813, 5461, 37, 117, 369, 373, 401, 403, 1109, 1137, 1205, 3413, 3637, 25, 77, 81, 241, 245, 267, 725
OFFSET
4,1
COMMENTS
It is conjectured that every odd number greater than 1 eventually appears in this sequence. The smallest and largest terms in row n are A199637(n) and A199638(n). The number of terms in row n is A131450(n) for n > 3.
The 10th and 20th rows are A199817 and A199818.
LINKS
MATHEMATICA
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; nn = 16; t = Table[{}, {nn}]; Do[len = Length[Select[Collatz[n], EvenQ]]; If[0 < len <= nn, AppendTo[t[[len]], n]], {n, 1, 25000, 2}]; t
KEYWORD
nonn,tabf
AUTHOR
T. D. Noe, Nov 14 2011
STATUS
approved
The number of halving steps of the Collatz 3x+1 map to reach 1 starting from 2n-1.
+10
4
0, 5, 4, 11, 13, 10, 7, 12, 9, 14, 6, 11, 16, 70, 13, 67, 18, 10, 15, 23, 69, 20, 12, 66, 17, 17, 9, 71, 22, 22, 14, 68, 19, 19, 11, 65, 73, 11, 16, 24, 16, 70, 8, 21, 21, 59, 13, 67, 75, 18, 18, 56, 26, 64, 72, 45, 10, 23, 15, 23, 61, 31, 69, 31, 77, 20, 20, 28, 58, 28, 12, 66, 74, 74, 17
OFFSET
1,2
COMMENTS
A given term k appears A131450(k) times. - Flávio V. Fernandes, Mar 13 2022
FORMULA
a(n) = A006577(2n-1) - A075680(n).
MAPLE
A006370 := proc(n) if type(n, 'even') then n/2; else 3*n+1 ; end if; end proc:
A006577 := proc(n) a := 0 ; x := n ; while x > 1 do x := A006370(x) ; a := a+1 ; end do; a ; end proc:
A006667 := proc(n) a := 0 ; x := n ; while x > 1 do if type(x, 'even') then x := x/2 ; else x := 3*x+1 ; a := a+1 ; end if; end do; a ; end proc:
A075680 := proc(n) A006667(2*n-1) ; end proc:
A166549 := proc(n) A006577(2*n-1)-A075680(n) ; end: seq(A166549(n), n=1..120) ; # R. J. Mathar, Oct 18 2009
# second Maple program:
b:= proc(n) option remember; `if`(n=1, 0,
1+b(`if`(n::even, n/2, (3*n+1)/2)))
end:
a:= n-> b(2*n-1):
seq(a(n), n=1..75); # Alois P. Heinz, Mar 14 2022
MATHEMATICA
b[n_] := b[n] = If[n == 1, 0, 1 + b[If[EvenQ[n], n/2, (3n+1)/2]]];
a[n_] := b[2n-1];
Table[a[n], {n, 1, 75}] (* Jean-François Alcover, Apr 22 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jimin Park, Oct 16 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Oct 18 2009
STATUS
approved
Consider the version of the Collatz or 3x+1 problem where x -> x/2 if x is even, x -> (3x+1)/2 if x is odd. Define the stopping time of x to be the number of steps needed to reach 1. Sequence gives the number of integers x with stopping time n.
+10
3
1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 12, 18, 24, 31, 39, 50, 68, 91, 120, 159, 211, 282, 381, 505, 665, 885, 1187, 1590, 2122, 2829, 3765, 5014, 6682, 8902, 11878, 15844, 21122, 28150, 37536, 50067, 66763, 89009, 118631, 158171, 210939, 281334, 375129
OFFSET
1,5
COMMENTS
The Mathematica function StoppingTime[n] is the length of the Collatz sequence starting at n before reaching 1.
Suppose we have a list L of the numbers with StoppingTime n. Then the list LL of StoppingTime n+1 can be produced as: First. Add to LL all numbers in L multiplied by 2. Second. For the numbers x now in LL, if x == 1 (mod 3), AppendTo LL the number (x-1)/3 (if (x-1)/3 != 1). These two steps make LL complete.
I think the offset, examples, formula and code are all off by 1 -- they all treat the stopping time of 1 to be 1, rather than 0. - David Applegate, Oct 16 2008
a(n+1), n >= 0, is the row length of A248573(n,m) (Collatz-Terras tree). For the first differences see A131450(n+1), but with A131450(2) = 1 (the number of 2 (mod 3) numbers in row n, for n >= 0, of A248573). - Wolfdieter Lang, May 04 2015
FORMULA
Conjecture: lim_{n->oo} a(n) = a(n-1)*4/3. - Joe Slater, Jan 27 2024
EXAMPLE
StoppingTime = 1: L = {1}, a(1)=1.
StoppingTime = 2: L = {2}, a(2)=1.
StoppingTime = 3: L = {4}, a(3)=1.
StoppingTime = 4: L = {8}, a(4)=1.
StoppingTime = 5: L = {5, 16}, a(5)=2. First, LL = {10, 32} (= 2*L). Second, 10 == 1 (mod 3), so we AppendTo LL also (10-1)/3 = 3. We get LL = {3, 10, 32}. So a(6) = 3.
MATHEMATICA
(*** Program #1 ***) For[v = 1, v <= 12, v++, lst = {}; For[n = 1, n < 2^v, n++, If[StoppingTime[n] == v, AppendTo[lst, n]]]; Print[lst]; Print[Length[lst]]; ]
(*** Program #2 ***) lst1 = {1}; For[v = 1, v <= 12, v++, L1 = Length[lst1]; Print["Number of numbers with StoppingTime ", v, ": ", L1]; Print["List of numbers: ", lst1]; (* Numbers with StoppingTime n *) Print["Control of StoppingTime: ", Map[StoppingTime, lst1]]; (* Controll *) Print[""]; lst2 = 2 lst1; For[i = 1, i <= L1, i++, x = (lst2[[i]] - 1)/3; If[IntegerQ[x] && x != 1, AppendTo[lst2, x]]; ]; lst1 = Sort[lst2]; ]
(*** Program #3 ***) lst0 = {}; lst1 = {1}; For[v = 1, v <= 35, v++, L1 = Length[lst1]; AppendTo[lst0, L1]; lst2 = 2 lst1; For[i = 1, i <= L1, i++, x = (lst2[[i]] - 1)/3; If[IntegerQ[x], AppendTo[lst2, x]]; ]; lst1 = Complement[lst2, {1}]; ]; lst0
PROG
(Perl) # code to calculate terms after a(4):
@x=(8, 0); for($n=5; $n<=60; $n++){do{$q=2*shift(@x); push(@x, ($q-1)/3)if($q%3==1); push @x, $q}while $q; print($#x, ", "); } # Carl R. White, Oct 03 2006
(PARI) first(N) = my(a=Vec([1, 1, 1, 1, 2], N), p=[], q=[5]); for(n=6, N, my(r=List()); foreach(p, x, listput(r, 4*x+1); if(1==x%6, listput(r, x+(x-1)/3))); foreach(q, x, if(5==x%6, listput(r, x-(x+1)/3))); a[n]=a[n-1]+#r; p=q; q=Vec(r)); a; \\ Ruud H.G. van Tol, Aug 14 2024
CROSSREFS
See A005186 for another version.
KEYWORD
nonn
AUTHOR
Bo T. Ahlander (ahlboa(AT)isk.kth.se), Mar 29 2001
EXTENSIONS
More terms from Carl R. White, Oct 03 2006
Edited by N. J. A. Sloane, Sep 15 2007
STATUS
approved
Odd numbers producing 10 even numbers in the Collatz iteration.
+10
2
11, 35, 113, 341
OFFSET
1,1
MATHEMATICA
Collatz[n_]:=NestWhileList[If[EvenQ[#], #/2, 3 #+1]&, n, #>1&]; t={}; Do[If[Length[Select[Collatz[n], EvenQ]] == 10, AppendTo[t, n]], {n, 1, 100000, 2}]; t
CROSSREFS
Cf. A131450.
Cf. A199636 (row 10).
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Nov 12 2011
STATUS
approved
Odd numbers producing 20 even numbers in the Collatz iteration.
+10
2
43, 131, 133, 397, 405, 433, 435, 441, 475, 1237, 1251, 1285, 1301, 1313, 1325, 1339, 1425, 1427, 1431, 1433, 3861, 3925, 3939, 3941, 3981, 4017, 4019, 4043, 4277, 4293, 4297, 4301, 11605, 11829, 12053, 12131, 12133, 12853, 12885, 12893, 12913, 12931, 36181
OFFSET
1,1
COMMENTS
For n <10000000, more terms: 36405, 38677, 38741, 38797, 38833, 38835, 116053, 116501, 349525.
See row 20 of A199636. There are A131450(20) = 52 terms. - T. D. Noe, Nov 18 2011
MATHEMATICA
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; t = {}; Do[If[Length[Select[Collatz[n], EvenQ]] == 20, AppendTo[t, n]], {n, 1, 100000, 2}]; t
CROSSREFS
Cf. A199636.
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Nov 12 2011
STATUS
approved

Search completed in 0.005 seconds