[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a130078 -id:a130078
     Sort: relevance | references | number | modified | created      Format: long | short | data
Largest x such that 2^x divides A001623(n), the number of reduced three-line Latin rectangles.
+10
2
0, 2, 1, 3, 4, 6, 5, 6, 7, 9, 8, 11, 13, 14, 12, 16, 15, 17, 16, 18, 19, 21, 20, 21, 22, 24, 23, 27, 27, 30, 27, 29, 31, 33, 32, 34, 35, 37, 36, 37, 38, 40, 39, 42, 44, 45, 43, 50, 46, 48, 47, 49, 50, 52, 51, 52, 53, 55, 54, 59, 58, 62, 58, 60, 63, 65, 64, 66, 67, 69, 68, 69, 70
OFFSET
3,2
LINKS
John Riordan, A recurrence relation for three-line Latin rectangles, Amer. Math. Monthly, 59 (1952), pp. 159-162.
D. S. Stones, The many formulas for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204-215.
FORMULA
a(n) = A007814(A001623(n)). - Michel Marcus, Oct 02 2017
PROG
(PARI) a001623(n) = n*(n-3)!*sum(i=0, n, sum(j=0, n-i, (-1)^j*binomial(3*i+j+2, j)<<(n-i-j)/(n-i-j)!)*i!);
a(n) = valuation(a001623(n), 2); \\ Michel Marcus, Oct 02 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Douglas Stones (dssto1(AT)student.monash.edu.au), May 06 2007
STATUS
approved
a(n) = n - A130077(n), i.e., n minus the largest x such that 2^x divides A001623(n), the number of reduced three-line Latin rectangles.
+10
2
3, 2, 4, 3, 3, 2, 4, 4, 4, 3, 5, 3, 2, 2, 5, 2, 4, 3, 5, 4, 4, 3, 5, 5, 5, 4, 6, 3, 4, 2, 6, 5, 4, 3, 5, 4, 4, 3, 5, 5, 5, 4, 6, 4, 3, 3, 6, 0, 5, 4, 6, 5, 5, 4, 6, 6, 6, 5, 7, 3, 5, 2, 7, 6, 4, 3, 5, 4, 4, 3, 5, 5, 5, 4, 6, 4, 1, 3, 6, 4, 5, 4, 6, 5, 5, 4, 6, 6, 6, 5, 7, 4, 5, 3, 7, 6, 5, 4
OFFSET
3,1
LINKS
John Riordan, A recurrence relation for three-line Latin rectangles, Amer. Math. Monthly, 59 (1952), pp. 159-162.
D. S. Stones, The many formulas for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204-215.
PROG
(PARI) a001623(n) = n*(n-3)!*sum(i=0, n, sum(j=0, n-i, (-1)^j*binomial(3*i+j+2, j)<<(n-i-j)/(n-i-j)!)*i!);
a(n) = n - valuation(a001623(n), 2); \\ Michel Marcus, Oct 02 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Douglas Stones (dssto1(AT)student.monash.edu.au), May 06 2007
STATUS
approved

Search completed in 0.004 seconds