[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a139492 -id:a139492
     Sort: relevance | references | number | modified | created      Format: long | short | data
Duplicate of A139492.
+20
9
7, 37, 43, 67, 79, 109, 127, 151, 163, 193, 211, 277, 331, 337, 373, 379, 421, 457, 463, 487, 499, 541, 547, 571, 613, 631, 673, 709, 739, 751, 757, 823, 877, 883, 907, 919, 967, 991, 1009, 1033, 1051, 1087, 1093, 1117, 1129, 1171, 1201, 1213, 1297, 1303
OFFSET
1,1
COMMENTS
Name was: Primes of the form x^2 + 3*x*y - 3*y^2 (as well as of the form x^2 + 5*x*y + y^2).
Discriminant = 21. Class number = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2-4ac and gcd(a,b,c)=1 (primitive).
Primes of the form 6n+1 which cannot be expressed as 7k-1, 7k-2, or 7k-4. a(n)^2 == 1 (mod 24). - Gary Detlefs, Jan 26 2014
Besides 7 (which divides 21), primes of the form p == 1 (mod 3) and either == 1 or 2 or 4 (mod 7). For the other class, the primes represented by the principal form [3, 3, -1] (or primitive forms equivalent to this) are besides 3 (which divides 21), congruent to 2 (mod 3) and also to 3, 5, 6 (mod 7). For the primes of both classes see A038893. - Wolfdieter Lang, Jun 19 2019
REFERENCES
Z. I. Borevich and I. R. Shafarevich, Number Theory.
LINKS
Peter Luschny, Binary Quadratic Forms
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
EXAMPLE
a(1)=7 because we can write 7 = 2^2 + 3*2*1 - 3*1^2 (or 7 = 1^2 + 5*1*1 + 1^2).
MAPLE
f:=n->7*ceil((6*n+1)/7)-(6*n+1):for n from 1 to 220 do if isprime(6*n+1) and f(n)<>1 and f(n)<>2 and f(n)<>4 then print(6*n+1) fi od. # Gary Detlefs, Jan 26 2014
MATHEMATICA
xy[{x_, y_}]:={x^2+3x y-3y^2, y^2+3x y -3x^2}; Union[Select[Flatten[xy/@ Subsets[ Range[50], {2}]], #>0&&PrimeQ[#]&]] (* Harvey P. Dale, Feb 17 2013 *)
PROG
(Sage) # uses[binaryQF]
# The function binaryQF is defined in the link 'Binary Quadratic Forms'.
Q = binaryQF([1, 3, -3])
Q.represented_positives(1326, 'prime') # Peter Luschny, Jun 24 2019
KEYWORD
dead
AUTHOR
Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (laucabfer(AT)alum.us.es), Jun 12 2008
EXTENSIONS
More terms from Harvey P. Dale, Feb 17 2013
STATUS
approved
Primes of the form -x^2 + 3*x*y + 3*y^2 (as well as of the form 5*x^2 + 9*x*y + 3*y^2).
+10
5
3, 5, 17, 41, 47, 59, 83, 89, 101, 131, 167, 173, 227, 251, 257, 269, 293, 311, 353, 383, 419, 461, 467, 479, 503, 509, 521, 563, 587, 593, 647, 677, 719, 761, 773, 797, 839, 857, 881, 887, 929, 941, 971, 983, 1013, 1049, 1091, 1097, 1109, 1151, 1181, 1193
OFFSET
1,1
COMMENTS
Discriminant = 21. Class number = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac and gcd(a,b,c) = 1 (primitive).
Except a(1) = 3, primes congruent to {5, 17, 20} mod 21. - Vincenzo Librandi, Jul 11 2018
The comment above is true since the binary quadratic forms with discriminant 21 are in two classes as well as two genera, so there is one class in each genus. A141159 is in the other genus, with primes = 7 or congruent to {1, 4, 16} mod 21. - Jianing Song, Jul 12 2018
4*a(n) can be written in the form 21*w^2 - z^2. - Bruno Berselli, Jul 13 2018
Both forms [-1, 3, 3] (reduced) and [5, 9, 3] (not reduced) are properly (via a determinant +1 matrix) equivalent to the reduced form [3, 3, -1], a member of the 2-cycle [[3, 3, -1], [-1, 3, 3]]. The other reduced form is the principal form [1, 3, -3], with 2-cycle [[1, 3, -3], [-3, 3, 1]] (see, e.g., A141159, A139492). - Wolfdieter Lang, Jun 24 2019
REFERENCES
Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
LINKS
Peter Luschny, Binary Quadratic Forms
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
EXAMPLE
a(3)=17 because we can write 17 = -1^2 + 3*1*2 + 3*2^2 (or 17 = 5*1^2 + 9*1*1 + 3*1^2).
MATHEMATICA
Reap[For[p = 2, p < 2000, p = NextPrime[p], If[FindInstance[p == -x^2 + 3*x*y + 3*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 25 2016 *)
Join[{3}, Select[Prime[Range[250]], MemberQ[{5, 17, 20}, Mod[#, 21]] &]] (* Vincenzo Librandi, Jul 11 2018 *)
PROG
(Magma) [3] cat [p: p in PrimesUpTo(2000) | p mod 21 in [5, 17, 20]]; // Vincenzo Librandi, Jul 11 2018
(Sage) # uses[binaryQF]
# The function binaryQF is defined in the link 'Binary Quadratic Forms'.
Q = binaryQF([-1, 3, 3])
Q.represented_positives(1200, 'prime') # Peter Luschny, Jun 24 2019
CROSSREFS
Cf. A141159, A139492 (d=21) A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17): A141111, A141112 (d=65).
Primes in A237351.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
KEYWORD
nonn
AUTHOR
Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (marcanmar(AT)alum.us.es), Jun 12 2008
EXTENSIONS
More terms from Colin Barker, Apr 05 2015
STATUS
approved
Odd primes p such that 21 is a square mod p.
+10
4
3, 5, 7, 17, 37, 41, 43, 47, 59, 67, 79, 83, 89, 101, 109, 127, 131, 151, 163, 167, 173, 193, 211, 227, 251, 257, 269, 277, 293, 311, 331, 337, 353, 373, 379, 383, 419, 421, 457, 461, 463, 467, 479, 487, 499, 503
OFFSET
1,1
COMMENTS
These primes correspond to the representation of the two classes of discriminant 21 of binary quadratic forms with principal reduced forms [1, 3, -3] and [3, 3, -1]. The first class represents the primes given in A141159 (or A139492). The second class gives the prime 3 (which divides 21), and primes congruent to 2 (mod 3) and also to 3, 5, 6 (mod 7). The solution of x^2 - 21 == 0 (mod p) leads to the representative primitive parallel forms for discriminant 21 and representation of primes p. - Wolfdieter Lang, Jun 19 2019
Prime factors of A082111 and excluding the 3, prime factors of A004538. - Klaus Purath, Jan 04 2023
LINKS
MATHEMATICA
Select[Prime[Range[100]], JacobiSymbol[21, #] != -1 &] (* Vincenzo Librandi, Sep 07 2012 *)
PROG
(PARI) isok(p) = (p>2) && isprime(p) && issquare(Mod(21, p)); \\ Michel Marcus, Jun 19 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Name clarified by Michel Marcus, Jun 22 2019
STATUS
approved
Primes of the form x^2 + 9x*y + y^2 for x and y nonnegative.
+10
1
11, 23, 37, 53, 67, 71, 113, 137, 163, 179, 191, 317, 331, 379, 389, 401, 421, 443, 449, 463, 487, 499, 599, 617, 631, 641, 653, 683, 709, 751, 757, 823, 863, 883, 907, 911, 947, 977, 991, 1061, 1087, 1093, 1103, 1171, 1213, 1303, 1367, 1373, 1409, 1423
OFFSET
1,1
COMMENTS
This is a member of the family of sequences of primes of the forms x^2 + kxy + y^2.
See for k=1 A007645 = x^2+3y^2, k=2 squares no primes, k=3 A038872, k=4 A068228 = x^2+9y^2, k=5 A139492, k=6 A007519 = x^2+8y^2, k=7 A033212 = x^2+15y^2, k=8 A107152 = x^2+45y^2, k=9 A139493, k=10 A107008 = x^2+24y^2, k=11 A139494, k=12 A139495, k=13 A139496, k=14* = 10 A107008 = x^2+24y^2, k=15 A139497, k=16 A033215 = x^2+21y^2, k=17 A139498, k=18 A107145 = x^2+40y^2, k=19 A139499, k=20 A139500, k=21 A139501, k=22 A139502, k=23 A139503, k=24 A139504, k=25 A139505, k=26,A139506, k=27 A139507, k=28 A139508, k=29 A139509, k=30 A139510, k=31 A139511, k=32 A139512
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
MATHEMATICA
a = {}; w = 9; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)
KEYWORD
nonn
AUTHOR
Artur Jasinski, Apr 24 2008
STATUS
approved

Search completed in 0.006 seconds