[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a139197 -id:a139197
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers k such that (k!-5)/5 is prime.
+0
3
5, 11, 12, 16, 36, 41, 42, 47, 127, 136, 356, 829, 1863, 2065, 2702, 4509, 7498
OFFSET
1,1
COMMENTS
a(16) > 3000. - Ray G. Opao, Oct 05 2008
a(18) > 25000. - Robert Price, Nov 20 2016
MATHEMATICA
a = {}; Do[If[PrimeQ[(n! - 5)/5], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a (* Artur Jasinski *)
PROG
(Magma) [n: n in [5..500] | IsPrime((Factorial(n)-5) div 5)]; // Vincenzo Librandi, Nov 21 2016
CROSSREFS
KEYWORD
hard,more,nonn
AUTHOR
Artur Jasinski, Apr 11 2008
EXTENSIONS
a(13)-a(15) from Ray G. Opao, Oct 05 2008
a(16) from Serge Batalov, Feb 18 2015
a(17) from Robert Price, Nov 20 2016
STATUS
approved
Numbers k such that (k!-6)/6 is prime.
+0
3
4, 5, 7, 8, 11, 14, 16, 17, 18, 20, 43, 50, 55, 59, 171, 461, 859, 2830, 3818, 5421, 5593, 10118, 10880, 24350
OFFSET
1,1
COMMENTS
a(25) > 25000. - Robert Price, Dec 15 2016
MAPLE
a:=proc(n) if isprime((1/6)*factorial(n)-1)=true then n else end if end proc: seq(a(n), n=4..500); # Emeric Deutsch, Apr 29 2008
MATHEMATICA
a = {}; Do[If[PrimeQ[(n! - 6)/6], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a (* Artur Jasinski *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Apr 11 2008
EXTENSIONS
2 more terms from Emeric Deutsch, Apr 29 2008
More terms from Serge Batalov, Feb 18 2015
a(22)-a(24) from Robert Price, Dec 15 2016
STATUS
approved
Numbers k such that (k!-7)/7 is prime.
+0
3
7, 9, 20, 23, 46, 54, 57, 71, 85, 387, 396, 606, 1121, 2484, 6786, 9321, 11881, 18372
OFFSET
1,1
COMMENTS
a(19) > 25000. - Robert Price, Nov 05 2016
MATHEMATICA
a = {}; Do[If[PrimeQ[(n! - 7)/7], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a (*Artur Jasinski*)
CROSSREFS
KEYWORD
hard,more,nonn
AUTHOR
Artur Jasinski, Apr 11 2008
EXTENSIONS
More terms from Alexis Olson (AlexisOlson(AT)gmail.com), Nov 14 2008
a(13)-a(14) PRPs from Sean A. Irvine, Aug 05 2010
a(15)-a(18) PRP from Robert Price, Nov 05 2016
STATUS
approved
Numbers k such that (k!-8)/8 is prime.
+0
3
4, 6, 8, 10, 11, 16, 19, 47, 66, 183, 376, 507, 1081, 1204, 12111, 23181
OFFSET
1,1
COMMENTS
a(17) > 25000. - Robert Price, Oct 08 2016
MAPLE
a:=proc(n) if isprime((1/8)*factorial(n)-1)=true then n else end if end proc: seq(a(n), n=4..550); # Emeric Deutsch, May 07 2008
MATHEMATICA
a = {}; Do[If[PrimeQ[(n! - 8)/8], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a
CROSSREFS
KEYWORD
hard,more,nonn
AUTHOR
Artur Jasinski, Apr 11 2008
EXTENSIONS
2 more terms from Emeric Deutsch, May 07 2008
More terms from Serge Batalov, Feb 18 2015
a(15)-a(16) from Robert Price, Oct 08 2016
STATUS
approved
Numbers k such that (k!-9)/9 is prime.
+0
3
6, 15, 17, 18, 21, 27, 29, 30, 37, 47, 50, 64, 125, 251, 602, 611, 1184, 1468, 5570, 10679, 15798, 21237
OFFSET
1,1
COMMENTS
a(20) > 10000. The PFGW program has been used to certify all the terms up to a(19), using a deterministic test which exploits the factorization of a(n) + 1. - Giovanni Resta, Mar 28 2014
a(23) > 25000. - Robert Price, Mar 29 2017
MATHEMATICA
a = {}; Do[If[PrimeQ[(n! - 9)/9], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a
PROG
(PARI) for(n=1, 1000, if(floor(n!/9-1)==n!/9-1, if(ispseudoprime(n!/9-1), print(n)))) \\ Derek Orr, Mar 28 2014
CROSSREFS
KEYWORD
hard,more,nonn
AUTHOR
Artur Jasinski, Apr 11 2008
EXTENSIONS
a(14)-a(16) from Derek Orr, Mar 28 2014
a(17)-a(19) from Giovanni Resta, Mar 28 2014
a(20)-a(22) from Robert Price, Mar 29 2017
STATUS
approved
Numbers k such that (k!-10)/10 is prime.
+0
20
5, 6, 7, 11, 13, 17, 28, 81, 87, 433, 640, 647, 798, 1026, 1216, 1277, 3825, 6684
OFFSET
1,1
COMMENTS
a(19) > 25000. - Robert Price, Dec 23 2016
MATHEMATICA
a = {}; Do[If[PrimeQ[(n! - 10)/10], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a (*Artur Jasinski*)
Select[Range[700], PrimeQ[(#!-10)/10]&] (* Harvey P. Dale, Feb 15 2015 *)
CROSSREFS
KEYWORD
hard,more,nonn
AUTHOR
Artur Jasinski, Apr 11 2008
EXTENSIONS
One additional term (a(12)) from Harvey P. Dale, Feb 15 2015
More terms from Serge Batalov, Feb 18 2015
a(18) from Robert Price, Dec 23 2016
STATUS
approved
Smallest father factorial prime p of order n = smallest prime of the form (p!-n)/n where p is prime.
+0
2
5, 2, 2947253997913233984847871999999, 29, 23, 19, 719, 4989599, 39520825343999, 11, 11058645491711999, 419, 479001599, 359, 7, 860234568201646565394748723848806399999999
OFFSET
1,1
COMMENTS
For smallest daughter factorial prime p of order n (smallest p such that (p!+n)/n = p!/n + 1 is prime) see A139074.
For smallest son factorial prime p of order n = smallest prime of the form (p!-n)/n where p is prime see A139206.
For more terms see A139206.
MATHEMATICA
a = {}; Do[k = 1; While[ ! PrimeQ[(Prime[k]! - n)/n], k++ ]; Print[a]; AppendTo[a, [(Prime[k]! - n)/n], {n, 1, 100}]; a (*Artur Jasinski*)
KEYWORD
hard,nonn
AUTHOR
Artur Jasinski, Apr 11 2008
STATUS
approved

Search completed in 0.008 seconds