[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a139196 -id:a139196
     Sort: relevance | references | number | modified | created      Format: long | short | data
(prime(n)!-7)/7.
+0
18
719, 5702399, 889574399, 50812489727999, 17377871486975999, 3693145248412139519999, 1263108856248528850649087999999, 1174691236311131831103651839999999, 1966250441603763578045139940225843199999999
OFFSET
4,1
COMMENTS
Not an integer for n < 4.
MATHEMATICA
Table[(Prime[n]! - 7)/7, {n, 4, 20}]
KEYWORD
nonn
AUTHOR
Artur Jasinski, Apr 11 2008
EXTENSIONS
Edited with one more term by Franklin T. Adams-Watters, Apr 09 2009
STATUS
approved
Smallest father factorial prime p of order n = smallest prime of the form (p!-n)/n where p is prime.
+0
2
5, 2, 2947253997913233984847871999999, 29, 23, 19, 719, 4989599, 39520825343999, 11, 11058645491711999, 419, 479001599, 359, 7, 860234568201646565394748723848806399999999
OFFSET
1,1
COMMENTS
For smallest daughter factorial prime p of order n (smallest p such that (p!+n)/n = p!/n + 1 is prime) see A139074.
For smallest son factorial prime p of order n = smallest prime of the form (p!-n)/n where p is prime see A139206.
For more terms see A139206.
MATHEMATICA
a = {}; Do[k = 1; While[ ! PrimeQ[(Prime[k]! - n)/n], k++ ]; Print[a]; AppendTo[a, [(Prime[k]! - n)/n], {n, 1, 100}]; a (*Artur Jasinski*)
KEYWORD
hard,nonn
AUTHOR
Artur Jasinski, Apr 11 2008
STATUS
approved
Natural numbers of the form (prime(n)!-3)/3.
+0
19
1, 39, 1679, 13305599, 2075673599, 118562476031999, 40548366802943999, 8617338912961658879999, 2947253997913233984847871999999, 2740946218059307605908520959999999, 4587917697075448348771993193860300799999999, 11150842204387935702723354017813583888383999999999, 20138421021124611879118377356171332502421503999999999, 86207747170389393547654785051203993323065877463039999999999, 1424961094686675188099337917796466549896781262788937908223999999999999
OFFSET
1,2
FORMULA
a(n)=(A139189(n+1)-2)/3. - R. J. Mathar, May 25 2008
MATHEMATICA
Table[(Prime[n]! - 3)/3, {n, 2, 20}]
KEYWORD
nonn
AUTHOR
Artur Jasinski, Apr 11 2008
EXTENSIONS
More terms from R. J. Mathar, May 25 2008
STATUS
approved
Natural numbers of the form (prime(n)!-6)/6.
+0
18
0, 19, 839, 6652799, 1037836799, 59281238015999, 20274183401471999, 4308669456480829439999, 1473626998956616992423935999999, 1370473109029653802954260479999999
OFFSET
1,2
MATHEMATICA
Table[(Prime[n]! - 6)/6, {n, 2, 20}]
KEYWORD
nonn
AUTHOR
Artur Jasinski, Apr 11 2008
STATUS
approved
a(n) = (prime(n)!-2)/2.
+0
18
0, 2, 59, 2519, 19958399, 3113510399, 177843714047999, 60822550204415999, 12926008369442488319999, 4420880996869850977271807999999, 4111419327088961408862781439999999, 6881876545613172523157989790790451199999999, 16726263306581903554085031026720375832575999999999, 30207631531686917818677566034256998753632255999999999, 129311620755584090321482177576805989984598816194559999999999, 2137441642030012782149006876694699824845171894183406862335999999999999
OFFSET
1,2
LINKS
FORMULA
a(n) = (A139189(n)-1)/2. - R. J. Mathar, May 25 2008
MATHEMATICA
Table[(Prime[n]! - 2)/2, {n, 1, 20}]
PROG
(PARI) a(n) = (prime(n)!-2)/2 \\ Charles R Greathouse IV, Apr 29 2015
KEYWORD
nonn
AUTHOR
Artur Jasinski, Apr 11 2008
EXTENSIONS
More terms from R. J. Mathar, May 25 2008
STATUS
approved
Natural numbers of the form (prime(n)! - 5)/5.
+0
18
23, 1007, 7983359, 1245404159, 71137485619199, 24329020081766399, 5170403347776995327999, 1768352398747940390908723199999, 1644567730835584563545112575999999
OFFSET
1,1
MAPLE
A039716 := proc(n) factorial(ithprime(n)) ; end: A139193 := proc(n) A039716(n)/5-1 ; end: seq(A139193(n), n=3..14) ; # R. J. Mathar, Sep 18 2009
MATHEMATICA
Table[(Prime[n]! - 5)/5, {n, 3, 20}]
KEYWORD
nonn
AUTHOR
Artur Jasinski, Apr 11 2008
STATUS
approved
Numbers k such that (k!-4)/4 is prime.
+0
20
4, 5, 6, 7, 8, 10, 15, 18, 23, 157, 165, 183, 184, 362, 611, 908, 2940, 6875, 9446, 16041
OFFSET
1,1
COMMENTS
Numbers k such that (k!-m)/m is prime:
for m=1 see A002982
for m=2 prime or pseudoprime see A082671
for m=3 see A139056
for m=4 see A139199
for m=5 see A139200
for m=6 see A139201
for m=7 see A139202
for m=8 see A139203
for m=9 see A139204
for m=10 see A139205
a(17) > 2000 - Ray G. Opao, Sep 30 2008
a(21) > 25000 - Robert Price, Sep 25 2016
MATHEMATICA
a = {}; Do[If[PrimeQ[(n! - 4)/4], Print[a]; AppendTo[a, n]], {n, 1, 184}]; a (*Artur Jasinski*)
PROG
(PARI) is(n)=n>3 && isprime(n!/4-1) \\ Charles R Greathouse IV, Apr 29 2015
CROSSREFS
KEYWORD
hard,more,nonn
AUTHOR
Artur Jasinski, Apr 11 2008
EXTENSIONS
a(15)-a(16) from Ray G. Opao, Sep 30 2008
a(17) from Serge Batalov, Feb 18 2015
a(18)-a(20) from Robert Price, Sep 25 2016
STATUS
approved
Numbers k such that (k!-8)/8 is prime.
+0
3
4, 6, 8, 10, 11, 16, 19, 47, 66, 183, 376, 507, 1081, 1204, 12111, 23181
OFFSET
1,1
COMMENTS
a(17) > 25000. - Robert Price, Oct 08 2016
MAPLE
a:=proc(n) if isprime((1/8)*factorial(n)-1)=true then n else end if end proc: seq(a(n), n=4..550); # Emeric Deutsch, May 07 2008
MATHEMATICA
a = {}; Do[If[PrimeQ[(n! - 8)/8], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a
CROSSREFS
KEYWORD
hard,more,nonn
AUTHOR
Artur Jasinski, Apr 11 2008
EXTENSIONS
2 more terms from Emeric Deutsch, May 07 2008
More terms from Serge Batalov, Feb 18 2015
a(15)-a(16) from Robert Price, Oct 08 2016
STATUS
approved
Numbers k such that (k!-7)/7 is prime.
+0
3
7, 9, 20, 23, 46, 54, 57, 71, 85, 387, 396, 606, 1121, 2484, 6786, 9321, 11881, 18372
OFFSET
1,1
COMMENTS
a(19) > 25000. - Robert Price, Nov 05 2016
MATHEMATICA
a = {}; Do[If[PrimeQ[(n! - 7)/7], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a (*Artur Jasinski*)
CROSSREFS
KEYWORD
hard,more,nonn
AUTHOR
Artur Jasinski, Apr 11 2008
EXTENSIONS
More terms from Alexis Olson (AlexisOlson(AT)gmail.com), Nov 14 2008
a(13)-a(14) PRPs from Sean A. Irvine, Aug 05 2010
a(15)-a(18) PRP from Robert Price, Nov 05 2016
STATUS
approved
Numbers k such that (k!-10)/10 is prime.
+0
20
5, 6, 7, 11, 13, 17, 28, 81, 87, 433, 640, 647, 798, 1026, 1216, 1277, 3825, 6684
OFFSET
1,1
COMMENTS
a(19) > 25000. - Robert Price, Dec 23 2016
MATHEMATICA
a = {}; Do[If[PrimeQ[(n! - 10)/10], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a (*Artur Jasinski*)
Select[Range[700], PrimeQ[(#!-10)/10]&] (* Harvey P. Dale, Feb 15 2015 *)
CROSSREFS
KEYWORD
hard,more,nonn
AUTHOR
Artur Jasinski, Apr 11 2008
EXTENSIONS
One additional term (a(12)) from Harvey P. Dale, Feb 15 2015
More terms from Serge Batalov, Feb 18 2015
a(18) from Robert Price, Dec 23 2016
STATUS
approved

Search completed in 0.008 seconds