[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a136063 -id:a136063
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes p such that (p+4)/5 is also prime.
+10
12
11, 31, 61, 151, 181, 211, 331, 541, 631, 691, 751, 811, 991, 1051, 1201, 1381, 1531, 1741, 1831, 1861, 2161, 2281, 2311, 2731, 2851, 3001, 3061, 3301, 3361, 3541, 3631, 3691, 3931, 4051, 4111, 4261, 4591, 4831, 4951, 5101, 5431, 5581, 5641, 5851, 6151
OFFSET
1,1
COMMENTS
Equivalently: Mother primes of order 2. For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180.
LINKS
MATHEMATICA
n = 2; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
Select[Prime[Range[400]], PrimeQ[(# + 4) / 5]&] (* Vincenzo Librandi, Apr 14 2013 *)
PROG
(PARI) {forprime(p=1, 1e4/*default(primelimit)*/, p%5-1 & next; isprime(p\5+1) & print1(p", "))} \\ M. F. Hasler, Feb 26 2012
(GAP) A136061:=Filtered(Filtered([1..10^6], IsPrime), p->IsPrime((p+4)/5)); # Muniru A Asiru, Oct 10 2017
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Dec 12 2007
STATUS
approved
Mother primes of order 7.
+10
12
31, 61, 151, 181, 241, 271, 331, 421, 541, 601, 631, 691, 991, 1051, 1171, 1231, 1321, 1531, 1621, 1951, 2221, 2251, 2341, 2671, 2851, 2971, 3331, 3391, 3571, 3931, 4021, 4051, 4201, 4231, 4591, 4651, 4951, 5281, 5581, 5821, 6121, 6271, 6301, 6451, 6481
OFFSET
1,1
COMMENTS
For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065.
LINKS
MATHEMATICA
n = 7; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 12 2007
STATUS
approved
Mother primes of order 3.
+10
11
29, 43, 71, 113, 127, 197, 211, 281, 421, 463, 491, 547, 617, 673, 701, 743, 757, 883, 911, 953, 967, 1051, 1093, 1163, 1373, 1471, 1583, 1597, 1667, 1877, 1933, 2143, 2213, 2311, 2423, 2437, 2647, 2801, 2857, 2927, 3011, 3067, 3137, 3221, 3347, 3557
OFFSET
1,1
COMMENTS
For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061.
LINKS
MATHEMATICA
n = 3; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 12 2007
STATUS
approved
Mother primes of order 10.
+10
11
43, 127, 211, 337, 379, 463, 631, 757, 883, 967, 1093, 1471, 1723, 2017, 2143, 2269, 2647, 2731, 2857, 3109, 3613, 3739, 4159, 4663, 4789, 4999, 5503, 5881, 5923, 6133, 6427, 6553, 6637, 7057, 7309, 7393, 7687, 8317, 8779, 8821, 9199, 9283, 9661, 9787
OFFSET
1,1
COMMENTS
For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065. For mother primes of order 8 see A136066. For mother primes of order 9 see A136067.
LINKS
MATHEMATICA
n = 10; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 12 2007
STATUS
approved
Mother primes of order 5.
+10
10
23, 67, 199, 331, 397, 463, 661, 727, 859, 1123, 1783, 2113, 2179, 2311, 2971, 3037, 3433, 3631, 3697, 4027, 4093, 4159, 4357, 4621, 5347, 5479, 5743, 6007, 6271, 6337, 6733, 7393, 7591, 7789, 8053, 8317, 8647, 9043, 9109, 9439, 9967, 10099, 10627
OFFSET
1,1
COMMENTS
For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063.
LINKS
MATHEMATICA
n = 5; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 12 2007
STATUS
approved
Mother primes of order 6.
+10
10
53, 79, 131, 157, 521, 547, 599, 677, 859, 911, 937, 1249, 1301, 1327, 1951, 2029, 2237, 2341, 2549, 2731, 2887, 2939, 3121, 3251, 3329, 3407, 3511, 3797, 4057, 4759, 4967, 5591, 5981, 6007, 6761, 7229, 7307, 7411, 7489, 7879, 8009, 8191, 8581, 8737
OFFSET
1,1
COMMENTS
For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064.
LINKS
MATHEMATICA
n = 6; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 12 2007
STATUS
approved
Mother primes of order 8.
+10
10
103, 307, 613, 1021, 1123, 1327, 2143, 2347, 2551, 3061, 3571, 3877, 4591, 6427, 6733, 7753, 8263, 8467, 9181, 9283, 10303, 10711, 11731, 12037, 12343, 12547, 12853, 15607, 15913, 16831, 17137, 17341, 17851, 18973, 19891, 21013, 21727
OFFSET
1,1
COMMENTS
For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065. For mother primes of order 8 see A136066.
LINKS
MATHEMATICA
n = 8; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 12 2007
STATUS
approved
Mother primes of order 9.
+10
10
191, 229, 419, 571, 761, 1103, 1483, 1559, 1901, 2053, 2129, 2851, 3079, 4219, 4409, 4523, 4561, 4751, 6271, 6689, 6803, 7069, 7753, 8171, 8209, 8513, 8741, 8779, 9311, 9463, 9539, 10831, 11743, 11971, 12161, 12503, 12541, 12959, 14251, 14593, 14669
OFFSET
1,1
COMMENTS
For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065. For mother primes of order 8 see A136066. For mother primes of order 9 see A136067.
LINKS
MATHEMATICA
n = 9; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 12 2007
STATUS
approved
Mother primes of order 11.
+10
10
47, 139, 277, 691, 829, 967, 1381, 1657, 2347, 3727, 4831, 5107, 5521, 6211, 7039, 7177, 7591, 8419, 9109, 9661, 10627, 12007, 12421, 13249, 14767, 16699, 17389, 19597, 20149, 20287, 21529, 24151, 24979, 25117, 26497, 28429, 29671, 29947
OFFSET
1,1
COMMENTS
For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065. For mother primes of order 8 see A136066. For mother primes of order 9 see A136067. For mother primes of order 10 see A136068.
LINKS
MATHEMATICA
n = 11; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 12 2007
STATUS
approved

Search completed in 0.008 seconds