Displaying 1-9 of 9 results found.
page
1
Primes p such that (p+4)/5 is also prime.
+10
12
11, 31, 61, 151, 181, 211, 331, 541, 631, 691, 751, 811, 991, 1051, 1201, 1381, 1531, 1741, 1831, 1861, 2161, 2281, 2311, 2731, 2851, 3001, 3061, 3301, 3361, 3541, 3631, 3691, 3931, 4051, 4111, 4261, 4591, 4831, 4951, 5101, 5431, 5581, 5641, 5851, 6151
COMMENTS
Equivalently: Mother primes of order 2. For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180.
MATHEMATICA
n = 2; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
PROG
(PARI) {forprime(p=1, 1e4/*default(primelimit)*/, p%5-1 & next; isprime(p\5+1) & print1(p", "))} \\ M. F. Hasler, Feb 26 2012
(GAP) A136061:=Filtered(Filtered([1..10^6], IsPrime), p->IsPrime((p+4)/5)); # Muniru A Asiru, Oct 10 2017
CROSSREFS
Cf. A088878, A091180, A136019, A136020, A136062, A136063, A136064, A136065, A136066, A136067, A136068, A136069, A136070.
Mother primes of order 7.
+10
12
31, 61, 151, 181, 241, 271, 331, 421, 541, 601, 631, 691, 991, 1051, 1171, 1231, 1321, 1531, 1621, 1951, 2221, 2251, 2341, 2671, 2851, 2971, 3331, 3391, 3571, 3931, 4021, 4051, 4201, 4231, 4591, 4651, 4951, 5281, 5581, 5821, 6121, 6271, 6301, 6451, 6481
COMMENTS
For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065.
MATHEMATICA
n = 7; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
CROSSREFS
Cf. A088878, A091180, A136019, A136020, A136061, A136062, A136063, A136064, A136065, A136067, A136068, A136069, A136070.
Mother primes of order 3.
+10
11
29, 43, 71, 113, 127, 197, 211, 281, 421, 463, 491, 547, 617, 673, 701, 743, 757, 883, 911, 953, 967, 1051, 1093, 1163, 1373, 1471, 1583, 1597, 1667, 1877, 1933, 2143, 2213, 2311, 2423, 2437, 2647, 2801, 2857, 2927, 3011, 3067, 3137, 3221, 3347, 3557
COMMENTS
For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061.
MATHEMATICA
n = 3; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
CROSSREFS
Cf. A088878, A091180, A136019, A136020, A136061, A136063, A136064, A136065, A136066, A136067, A136068, A136069, A136070.
Mother primes of order 10.
+10
11
43, 127, 211, 337, 379, 463, 631, 757, 883, 967, 1093, 1471, 1723, 2017, 2143, 2269, 2647, 2731, 2857, 3109, 3613, 3739, 4159, 4663, 4789, 4999, 5503, 5881, 5923, 6133, 6427, 6553, 6637, 7057, 7309, 7393, 7687, 8317, 8779, 8821, 9199, 9283, 9661, 9787
COMMENTS
For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065. For mother primes of order 8 see A136066. For mother primes of order 9 see A136067.
MATHEMATICA
n = 10; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
CROSSREFS
Cf. A088878, A091180, A136019, A136020, A136061, A136062, A136063, A136064, A136065, A136066, A136067, A136068, A136070.
Mother primes of order 5.
+10
10
23, 67, 199, 331, 397, 463, 661, 727, 859, 1123, 1783, 2113, 2179, 2311, 2971, 3037, 3433, 3631, 3697, 4027, 4093, 4159, 4357, 4621, 5347, 5479, 5743, 6007, 6271, 6337, 6733, 7393, 7591, 7789, 8053, 8317, 8647, 9043, 9109, 9439, 9967, 10099, 10627
COMMENTS
For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063.
MATHEMATICA
n = 5; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
CROSSREFS
Cf. A088878, A091180, A136019, A136020, A136061, A136062, A136063, A136065, A136066, A136067, A136068, A136069, A136070.
Mother primes of order 6.
+10
10
53, 79, 131, 157, 521, 547, 599, 677, 859, 911, 937, 1249, 1301, 1327, 1951, 2029, 2237, 2341, 2549, 2731, 2887, 2939, 3121, 3251, 3329, 3407, 3511, 3797, 4057, 4759, 4967, 5591, 5981, 6007, 6761, 7229, 7307, 7411, 7489, 7879, 8009, 8191, 8581, 8737
COMMENTS
For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064.
MATHEMATICA
n = 6; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
CROSSREFS
Cf. A088878, A091180, A136019, A136020, A136061, A136062, A136063, A136064, A136066, A136067, A136068, A136069, A136070.
Mother primes of order 8.
+10
10
103, 307, 613, 1021, 1123, 1327, 2143, 2347, 2551, 3061, 3571, 3877, 4591, 6427, 6733, 7753, 8263, 8467, 9181, 9283, 10303, 10711, 11731, 12037, 12343, 12547, 12853, 15607, 15913, 16831, 17137, 17341, 17851, 18973, 19891, 21013, 21727
COMMENTS
For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065. For mother primes of order 8 see A136066.
MATHEMATICA
n = 8; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
CROSSREFS
Cf. A088878, A091180, A136019, A136020, A136061, A136062, A136063, A136064, A136065, A136066, A136068, A136069, A136070.
Mother primes of order 9.
+10
10
191, 229, 419, 571, 761, 1103, 1483, 1559, 1901, 2053, 2129, 2851, 3079, 4219, 4409, 4523, 4561, 4751, 6271, 6689, 6803, 7069, 7753, 8171, 8209, 8513, 8741, 8779, 9311, 9463, 9539, 10831, 11743, 11971, 12161, 12503, 12541, 12959, 14251, 14593, 14669
COMMENTS
For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065. For mother primes of order 8 see A136066. For mother primes of order 9 see A136067.
MATHEMATICA
n = 9; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
CROSSREFS
Cf. A088878, A091180, A136019, A136020, A136061, A136062, A136063, A136064, A136065, A136066, A136067, A136069, A136070.
Mother primes of order 11.
+10
10
47, 139, 277, 691, 829, 967, 1381, 1657, 2347, 3727, 4831, 5107, 5521, 6211, 7039, 7177, 7591, 8419, 9109, 9661, 10627, 12007, 12421, 13249, 14767, 16699, 17389, 19597, 20149, 20287, 21529, 24151, 24979, 25117, 26497, 28429, 29671, 29947
COMMENTS
For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065. For mother primes of order 8 see A136066. For mother primes of order 9 see A136067. For mother primes of order 10 see A136068.
MATHEMATICA
n = 11; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
CROSSREFS
Cf. A088878, A091180, A136019, A136020, A136061, A136062, A136063, A136064, A136065, A136066, A136067, A136068, A136069.
Search completed in 0.008 seconds
|