[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a135932 -id:a135932
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers n such that n-LargestCube is prime, (LargestCube <= n).
+10
4
3, 4, 6, 10, 11, 13, 15, 19, 21, 25, 29, 30, 32, 34, 38, 40, 44, 46, 50, 56, 58, 66, 67, 69, 71, 75, 77, 81, 83, 87, 93, 95, 101, 105, 107, 111, 117, 123, 127, 128, 130, 132, 136, 138, 142, 144, 148, 154, 156, 162, 166, 168, 172, 178, 184, 186, 192, 196, 198, 204
OFFSET
1,1
LINKS
EXAMPLE
3-1^3=2, 4-1^3=3, ..., 10-2^3=2, 11-2^3=3, ..., 29-3^3=2, ....
MATHEMATICA
lst={}; Do[p=n-Floor[n^(1/3)]^3; If[PrimeQ[p], AppendTo[lst, n]], {n, 6!}]; lst
Select[Range[300], PrimeQ[#-Floor[Surd[#, 3]]^3]&] (* Harvey P. Dale, May 31 2017 *)
PROG
(PARI) is(n)=isprime(n - sqrtnint(n, 3)) \\ Charles R Greathouse IV, May 22 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved
Prime numbers p such that p-LargestCube is prime, (LargestCube <= p).
+10
3
3, 11, 13, 19, 29, 67, 71, 83, 101, 107, 127, 223, 227, 229, 233, 239, 257, 263, 269, 277, 283, 313, 317, 523, 541, 571, 601, 613, 619, 643, 661, 691, 709, 1013, 1019, 1031, 1061, 1097, 1103, 1109, 1151, 1163, 1181, 1193, 1223, 1229, 1277, 1283, 1307, 1733
OFFSET
1,1
COMMENTS
3-1^3=2, 11-2^3=3, 13-2^3=5, 29-3^3=2,..
LINKS
MATHEMATICA
lst={}; Do[p=n-Floor[n^(1/3)]^3; If[PrimeQ[p]&&PrimeQ[n], AppendTo[lst, n]], {n, 7!}]; lst
Select[Prime[Range[300]], PrimeQ[#-Floor[Surd[#, 3]]^3]&] (* Harvey P. Dale, May 19 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved
Primes p such that p+(floor(Sqrt(p)))^2 is prime.
+10
1
2, 7, 37, 43, 47, 67, 73, 149, 163, 167, 223, 337, 349, 353, 359, 409, 421, 439, 487, 499, 577, 587, 617, 691, 787, 823, 829, 911, 947, 1039, 1063, 1087, 1201, 1297, 1321, 1361, 1367, 1453, 1459, 1483, 1609, 1621, 1657, 1777, 1783, 1987, 1993, 2011, 2137, 2143
OFFSET
1,1
COMMENTS
2+1=3 prime, 7+4=11 prime, 37+36=73 prime,...
MATHEMATICA
f[n_]:=n+(Floor[Sqrt[n]])^2; lst={}; Do[p=Prime[n]; If[PrimeQ[f[p]], AppendTo[lst, p]], {n, 7!}]; lst
Select[Prime[Range[400]], PrimeQ[#+Floor[Sqrt[#]]^2]&] (* Harvey P. Dale, Apr 24 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved
Primes p such that p-+(floor(Sqrt(p)))^2 are primes.
+10
1
7, 43, 47, 67, 149, 163, 167, 337, 353, 487, 587, 617, 787, 911, 947, 1367, 1777, 1783, 2333, 2347, 2503, 2927, 2953, 2963, 3023, 3607, 3613, 3637, 3643, 3697, 3709, 3847, 4363, 4397, 4423, 4463, 4483, 4903, 5273, 6113, 6143, 6197, 7103, 7187, 7193, 8117
OFFSET
1,1
LINKS
MATHEMATICA
f1[n_]:=n-(Floor[Sqrt[n]])^2; f2[n_]:=n+(Floor[Sqrt[n]])^2; lst={}; Do[p=Prime[n]; If[PrimeQ[f1[p]]&&PrimeQ[f2[p]], AppendTo[lst, p]], {n, 8!}]; lst
fQ[n_]:=Module[{c=Floor[Sqrt[n]]^2}, AllTrue[n+{c, -c}, PrimeQ]]; Select[ Prime[ Range[1200]], fQ] (* Harvey P. Dale, Dec 15 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved
Prime numbers p such that p-q^3 is a prime number, (q is a prime number, q^3=LargestCube, LargestCube <= p).
+10
1
11, 13, 19, 29, 127, 24391, 357913, 571789
OFFSET
1,1
COMMENTS
3-1^3=2, 11-2^3=3, 13-2^3=5, 19-2^3=11, 29-3^3=2, 127-5^3=2,..
MATHEMATICA
lst={}; Do[q=Floor[n^(1/3)]; p=n-q^3; If[PrimeQ[p]&&PrimeQ[n]&&PrimeQ[q], AppendTo[lst, n]], {n, 2*9!}]; lst
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved
Prime numbers p such that p-LargestSquare is prime and p-LargestCube is also prime, (LargestSquare <= p, LargestCube <= p).
+10
1
3, 11, 19, 67, 71, 83, 107, 227, 263, 269, 613, 619, 1031, 1061, 1163, 1193, 1223, 1307, 1787, 1801, 1811, 1831, 1979, 1997, 2129, 4099, 4127, 4133, 4139, 4157, 4373, 4409, 4463, 4637, 4643, 4703, 5843, 5849, 5879, 5903, 6089, 6101, 6113, 6143, 6163, 6211
OFFSET
1,1
COMMENTS
11-3^2=2;11-2^3=3, 19-4^2=3,19-2^3=11,..
LINKS
MATHEMATICA
lst={}; Do[p2=n-Floor[Sqrt[n]]^2; p3=n-Floor[n^(1/3)]^3; If[PrimeQ[p2]&&PrimeQ[p3]&&PrimeQ[n], AppendTo[lst, n]], {n, 8!}]; lst
plsplcQ[p_]:=AllTrue[{p-Floor[Sqrt[p]]^2, p-Floor[Surd[p, 3]]^3}, PrimeQ]; Select[ Prime[ Range[1000]], plsplcQ] (* Harvey P. Dale, Jul 03 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved

Search completed in 0.005 seconds